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Chapter 1

Introduction

In this document we provide an overview of sampling and estimation methods that can be
used to obtain population values of risk exposure data and safety performance indicators
based on naturalistic driving study designs. More specifically, we discuss how to deter-
mine the optimal sample size required for the estimation of such population values based
on a probabilistic sample of that same population, and with a predefined level of preci-
sion. Examples of population values of interest are the mean or the total of the number of
kilometers traveled by all drivers of a car in a country, and the percentage of these same
drivers wearing a seat belt. We restrict ourselves to probabilistic sampling techniques be-
cause non-probabilistic sampling techniques like convenience and snowball sampling do not
lend themselves to the evaluation of the statistical properties of parameter estimates from a
sample, and are therefore unfit for the estimation of sample size.

In Chapters 2 and 3, where simple random sampling and stratified random sampling
are introduced, respectively, we assume that a complete sampling frame is available for
all units in the population of interest. In Chapter 4 we discuss how to sample from a
population with unequal probabilities, and why this can be useful. In Chapter 5 we extend
the discussion to the situation where a complete sampling frame is not available, and present
multi-stage sampling. In Chapter 6 we present two alternative methods of estimation of
population parameters from a sample: the ratio and the regression estimator. In Chapter 7
we consider the possibilities and implications of repeated sampling of the same population.
In all these chapters we are only concerned with the quantification of sampling error, and its
consequences for the estimation of sample size. However, there are other types of potential
errors as well, and these will be discussed in Chapter 8. Finally, considering all these aspects
of sampling techniques, in Chapter 9 we provide a list of recommendations for the study
design of the collection of data based on naturalistic driving observations.

As will become clear in the following chapters, a key concept in deciding about the size of
a sample is the concept of precision. Precision quantifies how closely the sample estimate of
a population parameter (such as a mean or a total or a percentage) corresponds to the actual
value of the population parameter. Keeping everything else fixed, the following rule applies:
given a certain sampling strategy, the higher the precision we impose on our estimate, the
larger the sample should be. If we only tolerate an absolute 1% error in our estimate of a
population characteristic like the percentage of car drivers in a country wearing a seat belt,
for example, a larger sample will be required than if we can settle for an absolute 5% error
in our estimate. Supposing that the true percentage of seat belt wearing is 80%, the latter

1



2 CHAPTER 1. INTRODUCTION

more liberal precision implies that we can expect the estimated percentage to be within the
range of 80±5% (i.e., somewhere between 75% and 85%), while the former more conservative
precision yields an estimated percentage with a range of 79% to 81%. With a precision of
only 5% it will therefore not be possible to detect effects of road safety measures on seat
belt wearing that are smaller than 10%, while the more conservative precision of 1% allows
us to detect much smaller effects, if any.

The results presented in this document are based on the classic textbook of Cochran
(1977), on Moors and Muilwijk (1975) and Hays (1970), and on several internet sources.



Chapter 2

Simple random sampling

2.1 Introduction

Simple random sampling is a method of selecting n units out of the N units in the population
such that every one of the possible distinct samples has an equal chance of being drawn. In
practice a simple random sample is drawn unit by unit. The units in the population are
numbered from 1 to N , and a series of random numbers between 1 and N is then drawn by
means of a table of random numbers or by means of a computer program that produces such
a table. At any draw the process used must give an equal chance of selection to any number
in the population not already drawn. The units bearing these n numbers is the sample.

Since a number that has been drawn is removed from the population for all subsequent
draws, this method is called random sampling without replacement. It is also possible to
use random sampling with replacement, in which case at any draw, all N members of the
population are given an equal chance of being drawn, no matter how often they already have
been drawn.

Let the population consist of N units denoted by y1, y2, . . . , yN . Let the sample consist of
n < N units denoted by y1, y2, . . . , yn. For totals and means we have the following definitions.

Table 2.1: Definitions of totals and means.
Population Sample

Total: Y =
∑N

i=1 yi = y1 + y2 + · · ·+ yN
∑n

i=1 yi = y1 + y2 + · · ·+ yn

Mean: Ȳ = Y
N

= y1+y2+···+yN
N

=
∑N

i=1 yi
N

ȳ = y1+y2+···+yn
n

=
∑n

i=1 yi
n

The interest in sampling centers most frequently on four characteristics of the population:

1. the mean Ȳ , e.g., the average number of motor vehicle kilometers driven;

2. the total Y , e.g., the total number of motor vehicle kilometers driven;

3. the ratio of two totals or means R = Y/X = Ȳ /X̄, e.g., the total number of fatalities
divided by the total number of motor vehicle kilometres driven;

4. the proportion of units that belong to some defined class, e.g., the proportion of drivers
wearing a seat belt.

3



4 CHAPTER 2. SIMPLE RANDOM SAMPLING

Table 2.2: Population characteristic and their estimators.
Population characteristic Estimator

Population mean µ = Ȳ ˆ̄Y = ȳ = sample mean

Population total Nµ = Y Ŷ = Nȳ =
N

∑n
i=1 yi
n

Population ratio R R̂ = ȳ
x̄

=
∑n

i=1 yi∑n
i=1 xi

The symbolˆdenotes an estimate of a population characteristic made from a sample.
In the formula for Ŷ in Table 2.2, the factor N

n
by which the sample total is multiplied is

also called the expansion or raising of inflation factor. Its inverse n
N

, the ratio of the size of
the sample to that of the population, is called the sampling fraction and is denoted by the
letter f .

For the next couple of chapters two essential assumptions are being made:

• the sampling distribution of the statistic G is normally distributed,

• the only error in the estimate of the population parameter θ is due to random sampling.

In Chapter 8 we will also consider other sources of error than the sampling error.

2.2 Properties of the mean of a sample

Generally, suppose one is interested in estimating the value of population parameter θ, and
one is considering the use of some sample statistic G as an estimate of the value of θ. Then
an estimate of the parameter θ made from the sample statistic G is said to be unbiased if

E(G) = θ. (2.1)

That is, the sample quantity G is unbiased as an estimator of θ if the expectation of G is θ;
in other words, G averaged over all possible random samples of size n is exactly equal to the
true population value θ. If samples are drawn without replacement, there are M = N !

n!(N−n)!

possible random samples. If samples of size n are drawn with replacement, the total number
of possible random samples is M = Nn.

For example, consider the mean of a simple random sample as an estimator of the mean
of the population. In this case

G = ȳ =

∑n
i=1 yi
n

,

and

θ = µ = Ȳ .

The question now is, is

E(ȳ) = µ = Ȳ ? (2.2)
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The answer is yes, because

E(ȳ) =E(
y1 + y2 + · · ·+ yn

n
). (2.3)

But since

E(aX) = aE(X) (2.4)

for some constant a and random variable X, and

E(X + Y + Z) = E(X) + E(Y ) + E(Z) (2.5)

for some random variables X, Y , and Z, it follows from (2.3) that

E(ȳ) =
E(y1) + E(y2) + · · ·+ E(yn)

n
.

But any E(y) is µ by definition, for observations taken at random from the same population,
and therefore

E(ȳ) =
nE(y)

n
= µ = Ȳ .

The mean ȳ of a random sample is an unbiased estimator of Ȳ , the population mean.
Analogously we find that

Ŷ = Nȳ (2.6)

is an unbiased estimator of the population total Y .

2.3 Properties of the variance of a sample

We define the sample variance as

s2 =

∑n
i=1(yi − ȳ)2

n− 1
=

∑n
i=1 y

2
i

n− 1
− n

n− 1
ȳ2. (2.7)

Letting

S2 =

∑N
i=1(yi − ȳ)2

N − 1
(2.8)

denote the population variance, the question again is, does s2 satisfy (2.1), i.e., is the sam-
ple variance (2.7) an unbiased estimator of the population variance (2.8)? Or expressed
mathematically:

E(s2) = S2 =

∑N
i=1(yi − ȳ)2

N − 1
?
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In order to investigate the relation between E(s2) and S2, we start by noting that it
follows from (2.7) that

E(s2) = E

(∑n
i=1 y

2
i

n− 1
− n

n− 1
ȳ2

)
= E

(∑n
i=1 y

2
i

n− 1

)
− E

(
n

n− 1
ȳ2

)
. (2.9)

Applying (2.4) and (2.5) to the first term on the right we see that

E

(∑n
i=1 y

2
i

n− 1

)
=

∑n
i=1E(y2

i )

n− 1
.

But since the population variance is defined as

S2 = E[yi − E(yi)]
2 = E(y2

i )− [E(yi)]
2 = E(y2

i )− Ȳ 2 = E(y2
i )− µ2,

we also have that

E(y2
i ) = S2 + Ȳ 2 = S2 + µ2 (2.10)

for any observation i. This means that∑n
i=1 E(y2

i )

n− 1
=

∑n
i=1(S2 + µ2)

n− 1
=

n

n− 1
(S2 + µ2). (2.11)

Generally, for any sample statistic G, we may consider its sampling distribution. This is
a theoretical probability distribution that shows the functional relation between the possible
values of some summary characteristic G of n cases drawn at random and the probability
(density) associated with each value over all possible samples of size n from a particular
population. In general, the sampling distribution of values for a sample statistic will not be
the same as the population distribution, unless the sample sizes considered satisfy n = 1.
Sampling distributions differ from population distributions in that the random variable is
always the value of some statistic based on a sample of n cases.

Since a sample statistic is a random variable, the mean and variance of any sampling
distribution are defined in the usual way. That is, let G be any sample statistic, then its
expectation or mean is

E(G) = µG,

and its variance is

σ2
G = E(G− µG)2 = E(G2)− [E(G)]2 = E(G2)− µ2

G.

So, if the statistic G is the mean ȳ of a random sample, for example, then

E(ȳ) = µȳ = µ,

meaning that the mean of the sampling distribution of means is the same as the population
mean, and

σ2
ȳ = E(ȳ2)− [E(ȳ)]2 = E(ȳ2)− µ2

ȳ = E(ȳ2)− µ2, (2.12)
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and therefore

E(ȳ2) = σ2
ȳ + µ2. (2.13)

Combining (2.9), (2.11), and (2.13) we obtain

E(s2) =
n

n− 1
(S2 + µ2)− n

n− 1
(σ2

ȳ + µ2) =
n

n− 1
(S2 − σ2

ȳ), (2.14)

which shows that the expectation of the sample variance (2.7) is equal to the difference
between the population variance S2 and the variance of the sampling distribution of means
σ2
ȳ, up to a factor n

n−1
.

Further working out (2.12), and assuming that the sample mean is based on n independent
observations, and letting any pair of these observations be denoted by i and j, with scores
yi and yj, then the square of the sample mean is

ȳ2 =
(y1 + y2 + · · ·+ yn)2

n2
=
y2

1 + y2
2 + · · ·+ y2

n + 2
∑

i<j yiyj

n2
, (2.15)

the sum of the squared scores, plus twice the sum of the cross-products of all pairs of scores,
all divided by n2. For a pair of independent observations i and j, we have that

E(yiyj) = E(yi)E(yj) = µ2. (2.16)

Combining (2.10) and (2.16) we therefore find that

E(ȳ2) =
E(y2

1) + E(y2
2) + · · ·+ E(y2

n) + 2
∑

i<j E(yiyj)

n2

=
n(S2 + µ2) + n(n− 1)µ2

n2

=
nS2 + nµ2 + n2µ2 − nµ2

n2

=
nS2 + n2µ2

n2
=
S2

n
+ µ2. (2.17)

Substitution of (2.17) in (2.12) finally yields the variance of the mean

σ2
ȳ = E(ȳ2)− µ2 =

S2

n
. (2.18)

The variance of the sampling distribution of means for independent samples of size n is
always equal to the population variance divided by the sample size, S2/n. The standard
error of the mean then equals

σȳ =
√
σ2
ȳ =

S√
n
. (2.19)

It follows from (2.18) that the variance of the sampling distribution of means is exactly
equal to the population variance when n = 1 only. It also follows from (2.18) that the
variance of the sampling distribution of means gets smaller and smaller as the sample size
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n gets larger and larger, as one would expect on intuitive grounds. Stated differently, the
larger the sample size, the more probable it is that the sample mean comes arbitrarily close
to the population mean, a fact that is also known as the law of large numbers. Of course,
if the sample is large enough to embrace the entire population, then there is no difference
whatsoever between the sample mean ȳ and the population mean Ȳ = µ.

Substitution of (2.18) in (2.14) yields

E(s2) =
n

n− 1
(S2 − σ2

ȳ) =
n

n− 1
(S2 − S2

n
) =

n

n− 1
S2 − S2

n− 1
=

(n− 1)S2

n− 1
= S2, (2.20)

which proves that the sample variance (2.7) is an unbiased estimator of the population
variance S2. We therefore add a hat to definition (2.7) of the sample variance in order to
indicate that it is an unbiased estimator of the population variance:

ŝ2 =

∑n
i=1(yi − ȳ)2

n− 1
. (2.21)

Given a sample of size n, the standard deviation of the population, S, is estimated simply
by taking the square root of the unbiased estimator ŝ2 in (2.21):

estimatedS =
√
ŝ2 = ŝ, (2.22)

while the standard error of the mean is also estimated by using the unbiased estimate ŝ2 in
(2.21) as follows

estimatedσȳ =
estimatedS√

n
=

√
ŝ2

n
=

ŝ√
n
. (2.23)

Example 2-1. Suppose we have a population consisting of N = 5 units with values 2, 4,
6, 8, and 10. For this population the total, the mean, and the variance are Y =

∑N
i=1 yi = 30,

Ȳ =
∑N

i=1 yi
N

= 30
5

= 6, and S2 =
∑N

i=1(yi−Ȳ )2

N−1
= 10, respectively. From this population we can

draw a total of M = N !
n!(N−n)!

= 5!
2!3!

= 10 different simple random samples of n = 2 units
without replacement. For each sample we calculate its mean ȳ, its total Nȳ, and its variance
ŝ2, see Table 2.3.

By averaging the values of ˆ̄Y , Ŷ , and ŝ2 for this sample space in Table 2.3 we find

their expectations to be equal to E( ˆ̄Y ) = 1
M

∑M
j=1 ȳj = 1

10

∑10
j=1 ȳj = 60

10
= 6 = µ = Ȳ ,

E(Ŷ ) = 1
M

∑M
j=1 Ŷj = 300

10
= 30 = Y = Nµ, and E(ŝ2) = 1

M

∑M
j=1 ŝ

2
j = 100

10
= 10 = S2,

confirming the unbiasedness of these estimates.

2.4 Sampling from finite populations

So far, we assumed that samples are drawn from very large populations. When samples are
drawn from populations that are relatively small, the sample mean and the sample total are
still unbiased estimators of the population mean and population total, respectively. However,
when samples are drawn from populations that are relatively small, and – more specifically
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Table 2.3: All possible simple random samples of n = 2 units without replacement from a
population of N = 5 units with values 2, 4, 6, 8, and 10.

Sample ˆ̄Y = ȳ Ŷ ŝ2 (ȳ − Ȳ )2

2 4 3 15 2 9
2 6 4 20 8 4
2 8 5 25 18 1
2 10 6 30 32 0
4 6 5 25 2 1
4 8 6 30 8 0
4 10 7 35 18 1
6 8 7 35 2 1
6 10 8 40 8 4
8 10 9 45 2 9
Total 60 300 100 30

– when the sampling fraction is relatively large, i.e., when n
N
> 0.1, then this must be

accounted for in the formulas for the variances and standard errors.
Specifically, for a population of N cases in all, from which samples of size n are drawn,

the sampling variance of the mean is

V(ȳ) = σ2
ȳ =

S2

n

(N − n)

N
=
S2

n
(1− f). (2.24)

The ratio N−n
N

in (2.24) is called the finite population correction (fpc), see Cochran (1977).
The sampling variance of the mean tends to be somewhat smaller for a fixed value of n
when sampling is from a finite population than when it is from an infinite population. Note
that here the size of σ2

ȳ depends both on N , the total number in the population, and n, the
sample size. It follows from (2.24) that the standard error of the mean is

σȳ =
S√
n

√
(N − n)

N
=

S√
n

√
1− f. (2.25)

For finite populations the sampling variance of the total Ŷ = Nȳ is

V(Ŷ ) = σ2
Ŷ

=
N2S2

n

(N − n)

N
=
N2S2

n
(1− f), (2.26)

while its standard error is

σŶ =
NS√
n

√
(N − n)

N
=
NS√
n

√
1− f. (2.27)

Cochran (1977, p.26) further shows that the unbiased sample estimator of the variance
of the mean ȳ is

v(ȳ) = estimated σ2
ȳ = s2

ȳ =
ŝ2

n

(
N − n
N

)
=
ŝ2

n
(1− f), (2.28)
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and that the unbiased sample estimator of the variance of the total Ŷ = Nȳ is

v(Ŷ ) = estimated σ2
Ŷ

= s2
Ŷ

=
N2ŝ2

n

(
N − n
N

)
=
N2ŝ2

n
(1− f), (2.29)

while the corresponding standard errors are

estimatedσȳ = sȳ =
ŝ√
n

√
1− f, (2.30)

and

estimatedσŶ = sŶ =
Nŝ√
n

√
1− f, (2.31)

respectively. In all these formulas ŝ is defined as in (2.21). As Cochran (1977, p.27) mentions
the latter two estimates are slightly biased, but for most applications the bias is unimportant.

In general, standard errors of the estimated population mean and total are used for three
important purposes:

• to compare the precision of simple random sampling with that obtained with other
methods of sampling, see the examples in Chapters 3, 5, and 6;

• to estimate the size of the sample needed in a survey that is being planned, see, e.g.,
Sections 2.8, 2.10, 3.6, 3.9, 5.2.3, 5.2.4, 6.1.3, and 6.2.3;

• to estimate the precision actually attained in a survey that has been completed.

Their calculation requires S2, the population variance. In practice this will not be known,
but it can be estimated from the sample data.

Example 2-2. Suppose we have the same population as in Example 2-1, consisting of
N = 5 units with values 2, 4, 6, 8, and 10, and with mean and variance equal to Ȳ =∑N

i=1 yi
N

= 30
5

= 6, and S2 =
∑N

i=1(yi−Ȳ )2

N−1
= 10, respectively. When drawing all possible

M = N !
n!(N−n)!

= 5!
2!3!

= 10 simple random samples of size n = 2 without replacement, in
Table 2.3 we see that

σ2
ȳ =

1

M

M∑
j=1

(ȳj − Ȳ )2 =
1

10

10∑
j=1

(ȳj − 6)2 =
30

10
= 3,

while it follows from (2.24) that – in this example –

V(ȳ) = σ2
ȳ =

S2

n

(N − n)

N
=

(
10

2

)(
3

5

)
= 3.

This illustrates that (2.24) indeed is an unbiased estimator of the variance of the sampling
distribution of the mean.
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2.5 Sampling with replacement

So far, we have discussed results for single random sampling without replacement of the units
in the population. For large populations the fact that samples are taken with or without
replacement can safely be ignored. However, when the population under study is relatively
small, the process of sampling with replacement has a real effect on the sampling distribution.

Even in this situation the sample mean is still an unbiased estimator of the population
mean, regardless of the size of the population sampled. However, when samples are drawn
with replacement, for finite populations the variance of the mean is

V(ȳ) = σ2
ȳ =

N − 1

N

S2

n
. (2.32)

Example 2-3. Suppose we again have the same population as in Example 2-1 consisting
of N = 5 units with values 2, 4, 6, 8, and 10. As mentioned before, for this population the

mean and the variance are Ȳ =
∑N

i=1 yi
N

= 30
5

= 6, and S2 =
∑N

i=1(yi−Ȳ )2

N−1
= 10, respectively.

From this population we can draw a total of M = Nn = 52 = 25 different simple random
samples of n = 2 units with replacement. For each sample we calculate its mean ȳ, see
Table 2.4.

From Table 2.4 we see that

E(ȳ) =
1

M

M∑
j=1

ȳj =
1

25

25∑
j=1

ȳj =
150

25
= 6,

which illustrates that the mean of the sample is still an unbiased estimator of the mean of
the population when drawing simple random samples with replacement. Moreover, it follows
from Table 2.4 that

σ2
ȳ =

1

M

M∑
j=1

(ȳj − Ȳ )2 =
1

25

25∑
j=1

(ȳj − 6)2 =
100

25
= 4,

and from (2.32) that – in this example –

V(ȳ) = σ2
ȳ =

S2

n

(N − 1)

N
=

(
10

2

)(
4

5

)
= 4,

confirming that (2.32) indeed yields an unbiased estimate of the variance of the sampling
distribution of the mean when drawing simple random samples with replacement.

2.6 Unbiased estimators of proportions

When dealing with dichotomous (qualitative) variables with only two categories with A
units in the population belonging to the first category and N − A in the population units
belonging to the second category, we have a proportion of P = A/N in the first category and
a proportion of Q = 1− P in the second category. Letting a denote the number of units in
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Table 2.4: All possible simple random samples of n = 2 units with replacement from a
population of N = 5 units with values 2, 4, 6, 8, and 10.

Sample ˆ̄Y = ȳ (ȳ − Ȳ )2

2 2 2 16
2 4 3 9
2 6 4 4
2 8 5 1
2 10 6 0
4 2 3 9
4 4 4 4
4 6 5 1
4 8 6 0
4 10 7 1
6 2 4 4
6 4 5 1
6 6 6 0
6 8 7 1
6 10 8 4
8 2 5 1
8 4 6 0
8 6 7 1
8 8 8 4
8 10 9 9

10 2 6 0
10 4 7 1
10 6 8 4
10 8 9 9
10 10 10 16
Total 150 100

the first category in the sample, then it can be shown that p = a/n is an unbiased estimator
of P (i.e., E(p) = P ), and

ŝ2 =
n

n− 1
pq (2.33)

(with q = 1− p) is an unbiased estimator of

S2 =
N

N − 1
PQ, (2.34)

the variance of the proportion in the population, see Cochran (1977, p.51). For dichotomous
variables we further have that the variance of the distribution of proportions in samples of
size n is

V(p) = σ2
P =

N

N − 1

PQ

n

(
1− n

N

)
=

(
N − n
N − 1

)
PQ

n
. (2.35)
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If p and P are the sample and population percentages, respectively, falling into class C,
(2.35) continues to hold for the variance of p. The square root of the latter variance is the
standard error of a proportion, and is denoted by σP . For populations that are not too small
(say N > 20), the ratio N/(N − 1) in (2.35) may be dropped yielding

V(p) = σ2
P =

PQ

n

(
1− n

N

)
. (2.36)

Moreover, if the sampling fraction is also not too large (say n < 0.1N), then the latter
formula can be further simplified to the well-known expression:

V(p) = σ2
P =

PQ

n
, (2.37)

see Moors and Muilwijk (1975, p.19). An unbiased estimator of the latter variance from the
sample is obtained with:

v(p) = estimated σ2
P = s2

ȳ =
ŝ2

n

N − n
N

= s2
p =

pq

n− 1

(
1− n

N

)
, (2.38)

compare with (2.28). It follows that if N is very large relative to n, so that the finite
population correction is negligible, an unbiased estimate of the variance of p is

v(p) = s2
p =

pq

n− 1
,

see Cochran (1977, p.51-52).

Table 2.5: Values of PQ and
√
PQ. P is the population percentage in class C.

P 0 10 20 30 40 50 60 70 80 90 100
PQ 0 900 1600 2100 2400 2500 2400 2100 1600 900 0√
PQ 0 30 40 46 49 50 49 46 40 30 0

Equation (2.35) shows how the variance of the estimated proportion or percentage changes
with P , for fixed n and N . If the finite population correction is ignored, we have (2.37). The
function PQ and its square root are shown in Table 2.5. These functions may be regarded
as the variance and standard deviation, respectively, for a sample of size n = 1. From
Table 2.5 it is clear that the variances and their square roots have their greatest values when
P = Q = 50, i.e., when the population is equally divided between the two classes. This
means that – for dichotomous variables – the choice for P = 50 always results in an upper
limit for the required sample size. Moreover, the standard error of p changes relatively little
when P lies anywhere between 30 and 70%.

The variance of Â = Np, the estimated total number of units in class C, is

V(Â) = σ2
Np =

N − n
N − 1

N2PQ

n
, (2.39)

and an unbiased estimator of the variance of Â = Np, the estimated total number of units
in class C in the population from the sample is obtained with:

v(Â) = estimated σ2
Np = s2

Np =
N(N − n)

n− 1
pq. (2.40)
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2.7 Confidence intervals

For large enough samples it can be assumed that the estimates of the mean ȳ and the total
Ŷ are normally distributed about the population values µ = Ȳ and Nµ = Y respectively,
and confidence intervals for these estimates can be constructed as follows. For the mean Ȳ
we have

ȳ − tsȳ ≤ Ȳ ≤ ȳ + tsȳ, (2.41)

where sȳ is defined in (2.30) and t is the value of the normal deviate corresponding to the
desired confidence probability if n ≥ 50, and t is the value in the Student t table with (n−1)
degrees of freedom if n < 50. For small samples with very skew distributions, however,
special methods are needed.

For large enough samples, the value of the normal deviate corresponding to the 95%
confidence probability is t = 1.96, and (2.41) equals

ȳ − 1.96sȳ ≤ Ȳ ≤ ȳ + 1.96sȳ. (2.42)

Formula (2.42) expresses that the inequality holds with a confidence of 95%. On average,
for 95 out of 100 samples the confidence interval will contain the actual population mean.
The lower and upper limits calculated for a specific sample are called the 95% confidence
limits of the population mean, and the maximum distance of 1.96sȳ between the sample and
the population mean is called the 95% confidence interval. The ratio 1.96sȳ

ȳ
is known as the

relative confidence interval; it is 1.96 times the variation coefficient of ȳ.
For a qualitative variable, the confidence interval is

p− tsp ≤ P ≤ p+ tsp, (2.43)

where sp is the square root of (2.38).
For the total Y the confidence interval is calculated as

Nȳ − tsŶ ≤ Y ≤ Nȳ + tsŶ , (2.44)

where sŶ is defined in (2.31). See Cochran (1977, p.27) and Hays (1970, Chapter 10).

Example 2-4. Signatures to a petition were collected on N = 676 sheets. Each sheet
had enough space for 42 signatures, but on many sheets a smaller number of signatures had
been collected. The number of signatures per sheet were counted on a random sample of
n = 50 sheets (about 7% of the sample), with the results shown in Table 2.6. Estimate the
total number of signatures to the petition and the 80% confidence limits.

Answer. Since the average number of signatures in this sample of 50 sheets is equal to

ȳ =

∑19
i=1 fiyi∑19
i=1 fi

=
(23)(42) + (4)(41) + · · ·+ (1)(3)

23 + 4 + · · ·+ 1
=

1471

50
= 29.42

signatures per sheet, the estimated total number of signatures in the population of 676 sheets
equals

ŷ = Nȳ = (676)(29.42) = 19887.92.



2.8. ESTIMATION OF SAMPLE SIZE 15

Table 2.6: Results for a sample of 50 petition sheets: yi is the number of signatures, and fi
the frequency of the number of sheets in the sample with yi signatures.

yi 42 41 36 32 29 27 23 19 16 15
fi 23 4 1 1 1 2 1 1 2 2
yi 14 11 10 9 7 6 5 4 3
fi 1 1 1 1 1 3 2 1 1

An unbiased estimate of the variance of the population is obtained from (2.21), i.e., from

ŝ2 =

∑19
i=1(fi(yi − ȳ))2

n− 1
=

∑19
i=1(fi(yi − ȳ))2

49
=

11220.18

49
= 228.9832653,

with standard deviation

ŝ =
√
ŝ2 =

√
228.9832653 = 15.13219301,

see (2.22). According to (2.31) the standard error of the total then equals

sŶ =
Nŝ√
n

√
1− f =

(676)(15.13219301)√
50

√
1− 50

676
= 1392.122281.

The 80% confidence limits of the total are therefore

Nȳ − 1.28sŶ ≤ Y ≤ Nȳ + 1.28sŶ ,

and thus

19887.92− (1.28)(1392.122281) ≤ Y ≤ 19887.92 + (1.28)(1392.122281),

meaning that

18106.00348 ≤ Y ≤ 21669.83652

with a confidence of 80%, i.e., in four out of five samples.

2.8 Estimation of sample size

As sample size increases, the distribution of the means of simple random samples from the
same population approaches the normal distribution more and more, irrespective whether the
variable of interest in the population is normally distributed or not. This is – loosely stated
– the famous central limit theorem in statistics. In that case the mean ȳ in the sample will
therefore be located between µ− 1.96σȳ and µ+ 1.96σȳ with a 95% probability, i.e.,

µ− 1.96σȳ ≤ ȳ ≤ µ+ 1.96σȳ, (2.45)
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with a probability of 95%. It follows from (2.45) that

ȳ − 1.96σȳ ≤ µ ≤ ȳ + 1.96σȳ (2.46)

with the same probability. Substraction of ȳ from (2.46) gives

−1.96σȳ ≤ µ− ȳ ≤ +1.96σȳ (2.47)

and therefore

|µ− ȳ| ≤ 1.96σȳ (2.48)

with a 95% probability.
Substituting (2.25) in (2.48) we see that – for a continuous variable –

|µ− ȳ| ≤ 1.96

√
S2

n

(
N − n
N

)
(2.49)

with a 95% probability. Assuming that we want the absolute error in our sample estimate ȳ
of the population mean µ to be no larger than d = |µ− ȳ|, say, with a 95% probability, then
from the latter equation we can obtain a formula for the required minimal sample size n:

d = t

√
S2

n

(
N − n
N

)
, (2.50)

Note that we have replaced the value 1.96 corresponding to a probability of 95% with t in
(2.50) in order to be as general as possible. If we want a 95% probability then t = 1.96; for
a 90% probability t = 1.64, for a 99% probability t = 2.58, et cetera. Solving (2.50) for n
we find that the minimal sample size should be

n =
t2S2

t2S2

N
+ d2

. (2.51)

For very large N this formula simplifies into

n0 =
t2S2

d2
, (2.52)

and we only need to estimate S. In this case it should be checked whether n0 < 0.1N . If
not we should apply the finite population correction and use

n =
n0

1 + n0

N

, (2.53)

which is identical to (2.51), as it is not very difficult to verify.
In order to establish the value of S in the population sometimes a small pilot study is

done. Or reasonable estimates can be found from previous studies in the same research field,
from studies in similar research fields, or based on theoretical grounds. Even with a rough
estimation we can thus obtain a useful indication about the required sample size. Note that
the formulas in this section are based on the normal distribution. It should therefore be
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checked that the estimated n is large enough. If not, a larger sample should be taken then
was calculated.

So far formulas have been provided for the estimation of sample size based on the absolute
error d = |µ− ȳ| in the estimation of µ. If a relative error of the estimate of µ is used then

dȲ = tσȳ, (2.54)

or, upon substitution of (2.24),

dȲ = t

√
S2

n

(
N − n
N

)
. (2.55)

In this case, d is a number satisfying 0 < d < 1. Solving (2.55) for n, we obtain

n =
t2S2

t2S2

N
+ d2Ȳ 2

.

The latter formula can also be written as

n =

(
tS
dȲ

)2

1 + 1
N

(
tS
dȲ

)2 , (2.56)

see Cochran (1977, p.77). For very large N this formula simplifies into

n0 =
t2S2

d2Ȳ 2
. (2.57)

The required sample size can also be expressed in terms of the coefficient of variation c = S
Ȳ

.
Substitution of S = cȲ in (2.56) yields

n =
t2c2

t2c2

N
+ d2

. (2.58)

Example 2-5. For a bed of silver maple seedlings 1 ft wide and 430 ft long, it was found
by complete enumeration that µ = Ȳ = 19 and S2 = 85.6, these being the true population
values. The sampling unit was 1 ft of the length of the bed, so that N = 430. With simple
random sampling, how many units must be taken to estimate µ within 10% of accuracy,
apart from a chance of 1 in 20?

Answer. Using (2.57) as a first approximation, and since dȲ = (0.1)(19) = 1.9 and
t = 1.96, we obtain

n0 =
(1.962)(85.6)

1.92
= 91.09.

However, since n0/N = 91.09/430 = 0.21 is not negligible, we use (2.53) yielding

n =
n0

1 + n0

N

=
91.09

1.21
= 75.28.
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Since 100(75.28/430) = 17.5, almost 18% of the bed has to be counted in order to attain the
precision desired.

For the estimation of sample size based on the absolute error d = |Nµ−Nȳ| of the total
Nµ = Y in the population we have that

d = tσŶ , (2.59)

or, upon substitution of (2.26),

d = t

√
N2S2

n

(
N − n
N

)
. (2.60)

Solving (2.60) for n, we obtain

n =
t2S2

t2S2

N
+ d2

N2

. (2.61)

If the finite population correction is negligible, i.e., if n < 0.1N , then the latter formula
simplifies into

n0 =
t2N2S2

d2
. (2.62)

If an estimation of the sample size is required based on the relative error dNȲ of the
total Nµ = Y , where 0 < d < 1, we need to solve

dNȲ = t

√
N2S2

n

(
N − n
N

)
, (2.63)

yielding for n

n =
t2S2

t2S2

N
+ d2Ȳ 2

. (2.64)

For large N the latter formula simplifies into

n0 =
t2S2

d2Ȳ 2
. (2.65)

Example 2-6. In a certain year we have a population of N = 7 million car drivers
in a country. On average these road users drive Ȳ = 15, 000 kilometers that year, with a
standard deviation of S = 5, 000 kilometers. The total amount of kilometers driven by car
drivers that year is therefore NȲ = 105 billion kilometers. With simple random sampling,
how many drivers must be selected to estimate the latter total NȲ within 5% of accuracy,
apart from a chance of 1 in 20?



2.8. ESTIMATION OF SAMPLE SIZE 19

Answer. Applying (2.65) as a first approximation with d = 0.05 and t = 1.96 we find
that

n0 =
(1.962)(5, 0002)

(0.052)(15, 0002)
= 170.7.

Since the sampling fraction n0

N
= 171

7000000
is negligible the required sample size is n = 171.

However, if we require a precision of 1% instead of 5%, the minimal sample size should be

n0 =
(1.962)(5, 0002)

(0.012)(15, 0002)
= 4268.

The sampling fraction n0

N
= 4268

7000000
= 0.0007 is still negligible in this case, and the required

sample size for this amount of precision is n = 4268.

For a qualitative variable we have for an absolute error that

|p− P | ≤ tσP (2.66)

which – upon substitution of (2.35) in (2.66), and letting d = |p−P | again denote the value
of this absolute error – yields

d = t

√(
N − n
N − 1

)
PQ

n
. (2.67)

Solving (2.67) for n we find that

n =
t2PQ
d2

1 + 1
N

(
t2PQ
d2 − 1

) . (2.68)

For practical use, an advance estimate p of P is substituted in this formula. If N is large, a
first approximation is

n0 =
t2pq

d2
. (2.69)

In practice we therefore first calculate n0. If the sampling fraction n0/N is negligible, n0 is
a satisfactory approximation of n in (2.68). If not, comparison of (2.68) and (2.69) shows
that n is obtained as

n =
n0

1 + (n0 − 1)/N
.
=

n0

1 + (n0/N)
, (2.70)

where
.
= stands for “is approximately equal to”.

It may be noted that it is easier to obtain an estimate of the required sample size for a
qualitative variable than for a quantitative variable. For a quantitative variable we need to
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have an estimate of the variance S2 of the variable in the population if we use an absolute
error, see (2.51) and (2.61), and estimates of both of the mean Ȳ and the variance S2 of the
variable in the population if we use a relative error, see (2.56) and (2.64). For a qualitative
variable, on the other hand, we only need an estimate of the proportion or percentage P in
the population, see (2.68). Even if we do not know this proportion or percentage, it is still
possible to obtain an estimate of the required sample size by using a value of P = 0.5 in
(2.68), since this yields an upper bound for the required sample size (see also Section 2.6).

Example 2-7. An anthropologist is preparing to study the inhabitants of some island.
Among other things, he wishes to estimate the percentage of inhabitants belonging to blood
group O. The anthropologist wants this percentage to be correct within 5% in the sense that,
if the sample shows 43% to have blood group O, the percentage for the whole island is sure
to lie within 38% and 48%. He also is willing to take a 1 in 20 chance of getting an unlucky
sample. The total population of the island is N = 3200. How large should the sample be?

Answer. In technical terms, the proportion p from the sample is to lie in the range P±5,
except for a 1 in 20 chance. Thus, d = |p − P | = 0.05 in (2.68), and t = 1.96. Moreover,
assuming the worst case scenario where P = 0.5 (see Section 2.6), it follows from (2.69) that
– as a first approximation – the sample size should be

n0 =
1.962(0.5)(0.5)

0.052
=

0.9604

0.0025
= 384.2.

Since n0/N = 384/3200 = 0.12, which is larger than 0.1, the finite population correction
(fpc) is needed. Correcting for the fpc by application of (2.70) results in an estimated sample
size of

n =
384

1 + (384− 1)/3200
= 343.

Example 2-8. For the same population as in Example 2-6 we wish to estimate the
percentage of car drivers wearing their seat belt. We want this percentage to be correct
within 5% in the sense that, if the sample shows 80% to wear a seat belt, the percentage for
the whole car driver population is sure to lie within 75% and 85%. We also are willing to
take a 1 in 20 chance of getting an unlucky sample. How large should this sample be?

Answer. The proportion p from the sample is to lie in the range P ± 0.05, except for a
1 in 20 chance. Thus, d = |p − P | = 0.05 in (2.68), and t = 1.96. Moreover, assuming the
worst case scenario where P = 0.5 (see Section 2.6), it follows from (2.69) that – as a first
approximation – the sample size should be

n0 =
1.962(0.5)(0.5)

0.052
=

0.49

0.0025
= 384.2.

Since n0/N = 384/5, 000, 000
.
= 0, the finite population correction (fpc) is not needed.

Assuming that P = 0.8 in the population we obtain

n0 =
1.962(0.8)(0.2)

0.052
=

2.4586

0.0025
= 246.
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Again assuming P = 0.8, but now requiring a precision of 1% instead of 5% we have

n0 =
1.962(0.8)(0.2)

0.012
=

0.614656

0.0001
= 6, 147,

where the fpc is still not needed.

Sometimes, particularly when estimating the total number NP of units in class C, we
wish to control the relative error instead of the absolute error in Np; for example, we may
wish to estimate NP with an error not exceeding 10%. Then

dP = tσP , (2.71)

or, upon substitution of (2.35),

dP = t

√
PQ

n

(
N − n
N − 1

)
. (2.72)

In this case, d is again a number satisfying 0 < d < 1. For this specification, replace d by
dP in formulas (2.68) and (2.69). From (2.69) we then get

n0 =
t2pq

d2p2
=
t2

d2

q

p
, (2.73)

while formula (2.70) is unchanged.
We end by noting that the value of d in formulas (2.50), (2.55), (2.60), (2.67), (2.71) is

known as the sampling error. For given population variance S2, population mean Ȳ , and/or
population proportion P , whichever is appropriate, and population size N , sample size n,
and confidence limit t, these formulas can therefore also be used to calculate the sampling
error of a particular sampling design.

Example 2-9. From a population of 10, 000 car drivers with a percentage of 80 wearing
the seat belt, a simple random sample of 400 car drivers is drawn. Assuming a 1 in 20 chance
of getting an unlucky sample, what is the sampling error of this sample?

Answer. Since N = 10, 000, P = 0.8, n = 400, and t = 1.96 in this situation, we apply
(2.67) which gives

d = t

√(
N − n
N − 1

)
PQ

n
= 1.96

√(
10, 000− 400

10, 000− 1

)
(0.8)(0.2)

400
= 0.048.

The absolute sampling error in this sampling design is therefore 4.8%.

2.9 Sample size with more than one item

In many surveys information has to be collected on more than one item. One method of
determining sample size is to select those items that are considered the most vital, and then
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to estimate the minimal sample size needed for each of these vital items separately. When
the single item estimations of n have been completed, it is time to make decisions based on
the results. If the estimations are all reasonably close, and the largest n is within budget,
then this sample size is used. When the n’s are quite different, however, selecting the largest
n may result in an overall precision that is much higher than originally intended, or in a
very expensive survey. In this case, the desired precision may be lowered for some items thus
allowing for the use of a smaller sample size. Sometimes the estimated n’s vary so wildly
that items simply have to be dropped from the survey altogether in view of the resources
available and the precision required for the purpose of the survey.

Example 2-10. Again consider Examples 2-6 and 2-8, where it was found – using simple
random sampling – that the estimation of the total distance traveled by car drivers with a
precision of 1% required a minimal sample size of n = 4, 268 car drivers, while the estimation
of the total percentage of seat belt wearing by the same population with a precision of 1%
required a minimal sample size of n = 6, 147 car drivers. If we want to obtain estimates for
both these items with a precision of 1%, we therefore should select a simple random sample
of n = 6, 147 car drivers.

2.10 Sample size when estimates are needed for sub-

populations

In Section 2.6 we discussed how to obtain an unbiased estimate of the number of units in
the population having a certain property. It often happens that the category is so important
that we are not only interested in its size but also in the mean or total of the variable of
interest in this category. Such categories are also known as subpopulations or domains of
study.

Consider a population of N units, of which A units belong to a certain subpopulation.
We will denote parameters corresponding to this subpopulation with the subscript s, and Ys
therefore refers to the total of variable y in the subpopulation, and Ȳs to its mean. Then

Ys =
A∑
i=1

yi and Ȳs =
1

A

A∑
i=1

yi, (2.74)

are the subtotal and the submean of the population, respectively, and – letting a denote the
number of elements in a random sample of this subpopulation –

ȳs =
1

a

a∑
i=1

yi (2.75)

is an unbiased estimator of the submean of the population. The variance of y in the sub-
population is

S2
s =

1

A− 1

A∑
i=1

(yi − Ȳs)2, (2.76)
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and an unbiased sample estimator of this variance is

ŝ2
s =

1

a− 1

a∑
i=1

(yi − ȳs)2, (2.77)

compare with (2.21).
Formulas (2.24) and (2.28) for the variance of the mean and the sample estimator of the

variance of the mean still apply to subpopulations, in which case they can be written as

V(ȳs) = σ2
ȳs =

S2
s

a
(1− a

A
), (2.78)

and

v(ȳs) = estimated σ2
ȳs = s2

ȳs =
ŝ2
s

a
(1− a

A
), (2.79)

respectively. Analogous to (2.41), confidence limits for the sample estimate of the submean
(2.75) can be constructed with

ȳs − tsȳs ≤ Ȳs ≤ ȳs + tsȳs , (2.80)

where sȳs is the square root of (2.79) and t is again the value of the normal deviate corre-
sponding to the desired confidence probability if n ≥ 50, and the value in the Student t table
with (n− 1) degrees of freedom if n < 50. For the finite population correction in (2.78) and
(2.79), 1− n

N
can be used instead of 1− a

A
when A is unknown. For unknown A, therefore,

formulas (2.78) and (2.79) turn into

V(ȳs) = σ2
ȳs =

S2
s

a
(1− n

N
), (2.81)

and

v(ȳs) = estimated σ2
ȳs = s2

ȳs =
ŝ2
s

a
(1− n

N
), (2.82)

respectively.
As far as the estimation of the subtotal is concerned, no problems arise as long as the

size A of the subpopulation is known. An unbiased estimator of the total is then

Aȳs =
A

a

a∑
i=1

yi, (2.83)

and all the results in Sections 2.4 and 2.7 apply again. So formulas (2.26) and (2.29) for
the variance of the total and the sample estimator of the variance of the total also apply to
subpopulations, in which case they can be written as

V(Ŷs) = σ2
Ŷs

=
A2S2

s

a
(1− a

A
), (2.84)
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and

v(Ŷs) = estimated σ2
Ŷs

= s2
Ŷs

=
A2ŝ2

s

a
(1− a

A
), (2.85)

respectively.
However, when the size A of the subpopulation is unknown, special measures need to

be taken because it is then not possible to use estimator (2.83). As will be illustrated in
Example 2-11, not knowing the value of A introduces extra uncertainty, resulting in a loss
of precision in the estimation of the subtotal of the population. The estimation of Ys with
unknown A is handled as follows. Let

y
′

i =

{
yi, if the unit is in the subpopulation,

0, if the unit is not in the subpopulation.
(2.86)

The population total of this new variable is

Y
′
=

N∑
i=1

y
′

i =
A∑
i=1

y
′

i +
N∑

i=A+1

y
′

i =
A∑
i=1

y
′

i + 0 = Ys, (2.87)

which means that the population subtotal of yi is equal to the population total of y
′
i. An

unbiased estimator of Y
′

= Ys is therefore obtained by multiplying the sample mean of y
′
i

with N :

Nȳ
′

= N
1

n

n∑
i=1

y
′

i = Ŷs. (2.88)

The sampling variance of the latter total is

V(Ŷs) = σ2
Ŷs

=
N2S

′2

n
(1− n

N
) (2.89)

with

S
′2 =

1

N − 1
(
N∑
i=1

y
′2
i −

Y 2
s

N
). (2.90)

A sample estimate of the variance of Ŷs is

v(Ŷs) = estimated σ2
Ŷs

=
N2s

′2

n
(1− n

N
), (2.91)

with

s
′2 =

1

n− 1

n∑
i=1

(y
′

i − ȳ
′
)2. (2.92)

The methods of this section also apply to surveys in which the frame used contains units
that do not belong to the population as it has been defined.
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Example 2-11. The number of children living with their parents is determined in a
simple random sample of n = 200 families from a large population consisting of 2.6 million
families, meaning that the finite population correction may be ignored. The frequency
distribution of the number of children in the sample is shown in Table 2.7. First estimate the
average number of children per family in the total population, including its 95% confidence
interval. Next estimate the average number of children in families with at least four children,
and its standard error. Finally estimate the total number of children and its standard error
in families with at least four children, in the following two situations: 1) the total number
of families with four or more children in the population is known, and 2) this total number
is unknown.

Table 2.7: Number of children in a simple random sample of 200 families.

Number of children Frequency
yj fj fjyj fjy

2
j

0 62 0 0
1 51 51 51
2 39 78 156
3 22 66 198
4 12 48 192
5 7 35 175
6 4 24 144
8 2 16 128

10 1 10 100
Total 200 328 1144

Answers. Let k = 9 denote the total number of categories in the frequency distribution
of Table 2.7. Then an unbiased estimate of the average number of children per family in the
population is

ȳ =

∑n
i=1 yi
n

=

∑k
j=1 fjyj∑k
j=1 fj

=
328

200
= 1.64.

An unbiased estimate of the variance in the population is

ŝ2 =

∑n
i=1(yi − ȳ)2

n− 1
=

∑k
j=1 fjy

2
j −

(
∑k

j=1 fjyj)2∑k
j=1 fj

(
∑k

j=1 fj)− 1
=

1144− (328)2

200

199
= 3.0456,

and the estimated standard error of the mean therefore equals

sȳ =

√
ŝ2

n
=

√
3.0456

200
= 0.1234.

The 95% upper and lower confidence limits of the mean are ȳ−1.96sȳ = 1.64−(1.96)(0.1234) =
1.398 and ȳ + 1.96sȳ = 1.64 + (1.96)(0.1234) = 1.882, respectively.
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Letting the index j only refer to the categories 4 through 10 in Table 2.7, an unbiased
estimate of the submean of families with at least four children is

ȳs =
1

a

a∑
i=1

yi =

∑k
j=1 yj∑k
j=1 fj

=
133

26
= 5.12.

An unbiased sample estimate of the variance of the latter submean equals

ŝ2
s =

1

a− 1

a∑
i=1

(yi − ȳs)2 =

∑
fjy

2
j −

(
∑
fjyj)2∑
fj

(
∑
fj)− 1

=
739− (133)2

26

26− 1
= 2.3462,

see (2.77), meaning that the sample estimate of the standard error of this submean is

sȳs =

√
ŝ2
s

a
=

√
2.3462

26
= 0.3004.

We next show how to estimate the subtotal number of children in families with four or
more children – and its standard error –, in the situation that the total number A of families
with four or more children in the population is known, based on the sample data in Table 2.7.

When the size A of the subpopulation of families with four or more children is known,
sample estimates of the subtotal and its standard error are obtained with (2.83) and (2.85),
yielding (A)(5.12) and (A)(0.3004) in the present situation, respectively. The coefficient of
variation of this estimate of the subtotal is therefore Asȳs

Aȳs
= 0.3004

5.12
= 0.0587.

When A is unknown, an estimate of the subtotal is calculated with (2.88) yielding

Ŷs = Nȳ
′
= N

1

n

n∑
i=1

y
′

i = (2.6)(
1

200
)(133) = 1.729 million.

The standard error of the latter subtotal is found with (2.91), which requires the calculation
of (2.92):

s
′2 =

1

n− 1

n∑
i=1

(y
′ − ȳ′

)2 =

∑k
j=1 fjy

′2
j −

(
∑k

j=1 fjy
′
j)2∑k

j=1 fj

(
∑k

j=1 fj)− 1
=

739− 1332

200

199
= 3.269.

Note that the index j in the latter formula now again runs over all nine categories of the
variable in Table 2.7. But the values of yj corresponding to the categories 0 through 3 (not
being part of the subpopulation of families of four children or more) are all set equal to zero
in this case. The standard error of the subtotal therefore equals

sŶs =

√
N2s′2

n
=
Ns

′

√
n

=
2.6
√

3.269√
200

= 0.333.

When A is unknown, the coefficient of variation of the estimate equals
sŶs
Ŷs

= 0.333
3.269

= 0.19.

This is a more than three-fold increase compared with the coefficient of variation of 0.0587
when the size A of the population is known, which illustrates the increased uncertainty that
is introduced in the estimation of subtotals when the size of the subpopulation of interest is
not known.
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We end this section by discussing how to estimate sample size n in simple random sam-
pling when precision requirements are not only imposed on parameter estimates of the popu-
lation of interest, but also on parameter estimates of a subpopulation. We again distinguish
two situations: one where A – the size of the subpopulation – is known, and the other where
A is unknown.

For an absolute error of the submean no larger than d = |Ȳs− ȳs| , the minimum sample
size is determined by

d = tσŶs , (2.93)

where t is the value of the normal deviate corresponding to the desired confidence probability,
as before. When A is known, formula (2.78) for σŶs can be substituted in (2.93), yielding

d = t

√
S2
s

a
(1− a

A
). (2.94)

Solving (2.94) with respect to a gives

a =
t2S2

s

d2 + 1
A
t2S2

s

. (2.95)

The minimal sample size n is then obtained from

n =
aN

A
. (2.96)

When A is unknown, formula (2.81) is substituted in (2.93) which results in

d = t

√
S2
s

a
(1− n

N
). (2.97)

In this case we have one equation with two unknowns: a and n. This is solved by making a
guess, say Ag, about the size of the subpopulation, and then substituting the expected value

of a = Agn

N
in (2.96). Solving the result with respect to n yields

n =
t2S2

sN

Agd2 + t2S2
s

. (2.98)

When in doubt, a value for Ag should be chosen that is as small as reasonably possible, since
the sample size n will then be on the safe side.

Similar derivations apply for the derivation of minimal sample size in the estimation of
subtotals in simple random sampling.
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Chapter 3

Stratified random sampling

3.1 Introduction

Simple random sampling as discussed in the previous chapter is not necessarily the most
efficient sampling strategy. One possible way to improve precision in the parameter estimates
of the population – and thus to reduce the required sample size for their estimation – is to
divide the population of size N into a number of mutually exclusive sub-populations of sizes
N1, N2, . . . , NL such that

N = N1 +N2 + · · ·+NL,

and then to apply simple random sampling to each of these L sub-populations separately.
These mutually exclusive sub-populations (e.g., males and females) are called strata. The
sample sizes in the strata are denoted by n1, n2, . . . , nL, respectively. This sampling proce-
dure is called stratified random sampling.

Generally, with stratified random sampling considerable gains in precision of the estimates
or considerable reduction in costs can be obtained when the population variance of the
variable of interest is (much) smaller within each stratum than in the total population.
Examples of such situations will be provided below. Since most guidelines can be given for
this situation, the largest part of this chapter is devoted to this case.

However, other important reasons for using stratification can also be:

• The population of interest is registered in more than one sampling frame. If these
frames are located in different places one is almost forced to draw separate samples
from the corresponding parts of the population.

• The method of observation or of sampling or of estimation must be performed differ-
ently in different parts of the population.

• If the survey requires precise estimates for certain subdivisions of the total population,
it is advisable to treat these subdivisions as separate strata.

In Sections 3.2 through 3.9 we will first assume that the number and types of strata have
already been decided upon and constructed. The problem of how to construct the strata
and of how many strata there should be is taken up in Section 3.10.

29
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3.2 Properties of the parameter estimates

Before embarking on the theory of stratified random sampling we first establish the notation
shown in Table 3.1.

Table 3.1: Notation for stratum h; h denotes the stratum and i the unit within the stratum.

Nh total number of units
nh number of units in sample
yhi value for the ith unit
Wh = Nh

N
stratum weight

fh = nh

Nh
sampling fraction in stratum

Ȳh =
∑Nh

i=1 yih
Nh

true mean

ȳh =
∑nh

i=1 yih
nh

sample mean

S2
h =

∑Nh
i=1(yih−Ȳh)2

Nh−1
true variance

Let L denote the number of strata, and let ȳh be an unbiased estimator of Ȳh in every
stratum. Then,

ȳst =

∑L
h=1Nhȳh
N

=
L∑
h=1

Whȳh, (3.1)

is an unbiased estimator of the population mean Ȳ , see Cochran (1977, p.91) for the proof.
If nh

n
= Nh

N
, i.e. if nh

Nh
= h

N
meaning that fh = f in every stratum, then the sampling fraction

is the same in all strata. This special type of stratification is known as stratification with
proportional allocation of the nh.

If the samples are drawn independently in different strata, then

V(ȳst) =
L∑
h=1

W 2
hV (ȳh), (3.2)

where V (ȳh) is the variance of ȳh over repeated samples from stratum h.
Moreover, for stratified random sampling, the variance of the estimate ȳst is

V(ȳst) = σ2
ȳst =

L∑
h=1

W 2
h

S2
h

nh
(1− fh). (3.3)

There are a number of special cases of (3.3). If the sampling fractions nh/Nh are negligible
in all strata, then

V(ȳst) = σ2
ȳst =

L∑
h=1

W 2
hS

2
h

nh
. (3.4)
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With proportional allocation we may substitute

nh =
nNh

N

in (3.3) yielding

V(ȳst) = σ2
ȳst =

1− f
n

L∑
h=1

WhS
2
h. (3.5)

Finally, if sampling is proportional and the variances in all strata have the same value, S2
w,

(3.5) further simplifies into

V(ȳst) = σ2
ȳst =

S2
w

n
(1− f). (3.6)

If Ŷst = Nȳst is the estimate of the population total Y , then

V(Ŷst) = σ2
Ŷst

=
L∑
h=1

Nh(Nh − nh)
S2
h

nh
(3.7)

is the variance of the sampling distribution of the total Ŷst of the stratified population.

Example 3-1. Given is a hypothetical population consisting of N = 7 units with values
3, 6, 6, 8 ,15, 18, and 28. For this population the total, the mean, and the variance are

Y =
∑N

i=1 yi = 84, Ȳ =
∑N

i=1 yi
N

= 84
7

= 12, and S2 =
∑N

i=1(yi−Ȳ )2

N−1
= 470

6
= 781

3
, respectively.

Moreover, if we draw a simple random sample of n = 5 units from this population, then it
follows from (2.26) that the sampling variance of the total Ŷ = Nȳ equals

V(Ŷ ) = σ2
Ŷ

=
N2S2

n
(1− f) =

(72)(781
3
)

5
(1− 5

7
) = 219

1

3
.

Now suppose that we divide this population into the two strata shown in Table 3.2.

Table 3.2: Population of N = 7 units divided into two strata of N1 = 4 and N2 = 3 units.

Stratum Values Total
1 3 6 6 15 30
2 8 18 28 54

We first of all note that the population totals in the two strata are Y1 = 30 and Y2 =
54, respectively, and that the corresponding population means are Ȳ1 = 30

4
= 7.5 and

Ȳ2 = 54
3

= 18, respectively, so that the grand mean in the population is
∑L

h=1WhȲh =
(4

7
)(7.5) + (3

7
)(18) = 12 = Ȳ . The variances of the units within these two strata of the

population are S2
1 =

∑N1
i=1(yi1−Ȳ1)2

N1−1
= 81

3
= 27 and S2

2 =
∑N2

i=1(yi2−Ȳ2)2

N2−1
= 200

2
= 100, respectively.
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We now draw a simple random sample of n1 = 3 units from stratum 1, and a simple
random sample of n2 = 2 units from stratum 2. Since there are M = ΠL

h=1
Nh!

nh!(Nh−nh)!

possible samples in stratified random sampling without replacement, we have a total of
M = ( N1!

n1!(N1−n1)!)
)( N2!
n2!(N2−n2)!)

) = ( 4!
3!1!

)( 3!
2!1!

) = (4)(3) = 12 possible random samples in the
present situation. All these 12 possible random samples are given in Table 3.3.

Table 3.3: All possible simple random samples of size n1 = 3 and n2 = 2 without replacement
from the two population strata in Table 3.2, and their statistics.

Sample number Stratum 1 Stratum 2 ȳ1 ȳ2 Ŷ1 Ŷ2 Ŷ
1 3 6 6 8 18 5 13 20 39 59
2 3 6 6 8 28 5 18 20 54 74
3 3 6 6 18 18 5 23 20 69 89
4 3 6 15 8 28 8 13 32 39 71
5 3 6 15 8 28 8 18 32 54 86
6 3 6 15 18 28 8 23 32 69 101
7 3 6 15 8 18 8 13 32 39 71
8 3 6 15 8 28 8 18 32 54 86
9 3 6 15 18 28 8 23 32 69 101

10 6 6 15 8 18 9 13 36 39 75
11 6 6 15 8 28 9 18 36 54 90
12 6 6 15 18 28 9 23 36 69 105

Total 90 216 360 648 1008
Expectation= Total/12 7.5 18 30 54 84

A comparison of the expectations in Table 3.3 with the population parameters shows that
the estimators are indeed unbiased, since E(ȳh) = Ȳh for h = 1, 2, E(Ŷh) = Yh for h = 1, 2,

E(Ŷ ) = Y , and also E( ˆ̄Y ) = Ȳ because 84
7

= 12.
Moreover, from (3.7) we obtain the variance of the sampling distribution of the stratified

population total

V(Ŷst) =
L∑
h=1

Nh(Nh − nh)
S2
h

nh
= N1(N1 − n1)

S2
1

n1

+N2(N2 − n2)
S2

2

n2

(3.8)

=4(4− 3)
27

3
+ 3(3− 2)

100

2
= (4)(9) + (3)(50) = 186.

For a simple random sample of n1 = 2 and n2 = 3 from stratum 1 and 2 in Table 3.2, on
the other hand, it follows from (3.7) that

V(Ŷst) =N1(N1 − n1)
S2

1

n1

+N2(N2 − n2)
S2

2

n2

(3.9)

=4(4− 2)
27

2
+ 3(3− 3)

100

3
= (8)(

27

2
) = (4)(27) = 108.

A summary of the results for this example are given in Table 3.4. As the latter table
clearly indicates, for a sample of n = 5 units drawn from a population of N = 7 units, the
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Table 3.4: Sampling variances for population of N = 7 units using two stratified random
sampling schemes.

Type of sampling Sample size Sampling variance of the total
simple random sample n = 5 2191

3

stratified random sample n1 = 3 n2 = 2 186
stratified random sample n1 = 2 n2 = 3 108

precision of the estimated population total is the worst for a simple random sample, better
for a stratified random sample with n1 = 3 and n2 = 2, and best for a stratified random
sample with n1 = 2 and n2 = 3.

Example 3-2. We have the 1930 number of inhabitants, in thousands, of N = 64 large
cities in the United States, see Table 3.5. The cities are arranged in two strata, the first
containing the 16 largest cities, and the second the remaining 48 cities.

The total number of inhabitants in all 64 cities is to be estimated from a sample of size
n = 24. Calculate the standard errors of the estimated total for 1) a simple random sample,
2) a stratified random sample with proportional allocation, and 3) a stratified random sample
with 12 units drawn from each stratum.

Table 3.5: Population sizes of N = 64 large cities (in 1000’s) in the United States in 1930.

Stratum
1 2

900 364 209 113
822 317 183 115
781 328 163 123
805 302 253 154
670 288 232 140

1238 291 260 119
573 253 201 130
634 291 147 127
578 308 292 100
487 272 164 107
442 284 143 114
451 255 169 111
459 270 139 163
464 214 170 116
400 195 150 122
366 260 143 134

Answer. The total and variance of the complete population is Y = 19, 568 and S2 =
52, 448. The three estimates are denoted by Ŷ , Ŷst(prop), and Ŷst(equal).

1. Using (2.26) we find that – for simple random sampling – the sampling variance of the
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total Ŷ equals

V(Ŷ ) = σ2
Ŷ

=
N2S2

n
(1− f) =

(642)(52, 448)

24

(
64− 24

24

)
= 5, 594, 453,

with a standard error of σ(Ŷ ) =
√

5, 594, 453 = 2365.

2. The population variances in the two strata are S2
1 = 53, 843 and S2

2 = 5581, respec-
tively. Note that the population variance of the 16 largest cities in the first stratum
is almost ten times as large as the population variance of the 48 cities in the second
stratum. In proportional allocation we have n1 = 6 and n2 = 18, since n1

N1
= n2

N2
in this

case. Applying (3.7) to this situation we obtain

V(Ŷst(prop)) = σ2
Ŷst(prop)

= N1(N1 − n1)
S2

1

n1

+N2(N2 − n2)
S2

2

n2

= 16(16− 6)
53, 843

6
+ 48(48− 18)

5581

18
= 1, 882, 293.334,

from which it follows that the standard error σ(Ŷst(prop)) equals
√

1, 882, 293.334 = 1372
for proportional stratified random sampling.

3. Applying (3.7) to an equal allocation with n1 = n2 = 12 we find that

V(Ŷst(prop)) = σ2
Ŷst(prop)

= N1(N1 − n1)
S2

1

n1

+N2(N2 − n2)
S2

2

n2

= 16(16− 12)
53, 843

12
+ 48(48− 12)

5581

12
= 1, 090, 826.667,

meaning that the standard error σ(Ŷst(equals)) is
√

1, 090, 826.667 = 1044 for stratified
random sampling using equal allocation.

We end example 3-2 by noting that equal sample sizes in the two strata are more precise
than proportional allocation in this case, and that both stratified random sampling schemes
are greatly superior to simple random sampling because the units in the two strata are much
more homogeneous than the units in the complete population.

3.3 The estimated variances and confidence limits

It is clear from (2.21) in Section 2.3 that an unbiased estimator of the population variance
in stratum h is

ŝ2
h =

1

nh − 1

nh∑
i=1

(yhi − ȳh)2, (3.10)

if a simple random sample is taken within each stratum. This means that with stratified
random sampling

v(ȳst) = estimated σ2
ȳst = ŝ2

ȳst =
1

N2

L∑
h=1

Nh(Nh − nh)
ŝ2
h

nh
, (3.11)
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is an unbiased estimator of the variance of ȳst, see Cochran (1977, p.95) for a proof.
If ȳst is normally distributed, it follows from (3.11) that the confidence limits for the

population mean are equal to

ȳst ± tŝȳst , (3.12)

while those of the population total are

Nȳst ± tNŝȳst , (3.13)

where t can be read from tables of the normal distribution.

3.4 Optimum allocation to strata

As we saw in the examples discussed in Section 3.2, for a sample of given size n it can make
quite a difference for the precision of the population parameter estimates how the units in
the total sample are allocated to the L strata of the population. In this section we present
strategies for the optimization of the allocation of sample units to the L strata, temporarily
assuming that the sample size is given and known. The more usual and general situation
where the total sample size is unknown and also has to be estimated will be taken up in
Section 3.6.

For an optimal allocation with given sample size, also called Neyman allocation, the
partitioning of n over the L strata is chosen such that the variance of V(ȳ) in (3.3) is
minimized. It can be proved that this is achieved by taking

nh = n
NhSh∑
NhSh

, (3.14)

for h = 1, . . . , L. The latter formula implies that the sample size nh in a stratum should be
larger when the population size or the standard deviation in that stratum is larger. In other
words, from large and/or heterogenous strata more units should be sampled. The value of
the variance for optimum allocation with fixed n is obtained by substituting (3.14) into the
general formula (3.3) for V(ȳst) yielding the minimal variance equal to:

Vmin(ȳst) =
(
∑
WhSh)

2

n
−
∑
WhS

2
h

N
, (3.15)

where the second term on the right represents the finite population correction.

Example 3-3. For the hypothetical data in Example 3-1, the application of (3.14) for a
given sample size of n = 5 to the two strata yields

n1 = n
N1S1

N1S1 +N2S2

= 5
4
√

27

4
√

27 + 3
√

100
= 2.05

for stratum 1 and

n2 = n
N2S2

N1S1 +N2S2

= 5
3
√

100

4
√

27 + 3
√

100
= 2.95
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for stratum 2. Rounding these numbers the optimal allocation is n1 = 2 and n2 = 3 which
indeed gives the smallest variation, see also Table 3.4.

Example 3-4. For the data in Example 3-2, the application of (3.14) for a given sample
size of n = 24 to the two strata results in

n1 = n
N1S1

N1S1 +N2S2

= 24
16
√

53, 843

16
√

53, 843 + 48
√

5581
= 12.21

for stratum 1 and

n2 = n
N2S2

N1S1 +N2S2

= 24
48
√

5581

16
√

53, 843 + 48
√

5581
= 11.79

for stratum 2, showing – after rounding – that an equal allocation of n1 = n2 = 12 is indeed
the optimal solution.

Example 3-5. In order to estimate the mean turnover of companies in inland shipping a
sample of 300 companies is drawn. The population is stratified by the number of ships owned
by each company. The numbers of companies in these strata are known, and estimates of
the standard deviations of the turnover are also available, see Table 3.6. Find the optimal
allocation of the sample of 300 companies to the three strata, and compare the precision of
the latter Neyman allocation with a proportional allocation.

Table 3.6: Turnover of inland shipping companies in three strata.

Number Number Standard deviation Optimal
Stratum h of ships of companies Sh of the turnover NhSh number

per company Nh (in 1000) nh
1 1 850 6 5,100 113
2 2-4 280 15 4,200 93
3 ≥ 5 60 70 4,200 93

Total 1, 190 - 13, 500 299

Answer. In order to find the optimal allocation of given n = 300 for the data in Table 3.6,
we use (3.14) and obtain n1 = 300 5,100

13,500
= 113, n2 = 300 4,200

13,500
= 93, and n3 = 300 4,200

13,500
= 93,

as shown in the last column of Table 3.6. We see that there is a problem with the optimal
n3 because the optimal allocation would require a larger sample than the total number
of companies in this stratum of the population. This situation is known as the problem
of over-sampling. The solution is to allocate all N3 = 60 companies to n3, and then to
reapply proportional allocation to the remaining 240 companies in the sample, and 1130
companies in the population. Since

∑2
h=1 NhSh = 9, 300 in this case, we obtain sample sizes

of n1 = 2405,100
9,300

= 132 and n1 = 2404,200
9,300

= 108 companies for the first two strata. The
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variance of the estimated mean turnover in this sample can be calculated with (3.3), yielding

V(ȳst) =

(
850

1190

)2(
62

132

)(
1− 132

850

)
+

(
280

1190

)2(
152

108

)(
1− 108

280

)
+

(
60

1190

)2(
702

60

)(
1− 60

60

)
= 0.1884.

Note that stratum 3 does not contribute to this variance because the complete stratum of
the population is sampled.

If we use proportional allocation, on the other hand, the nh should satisfy nh

n
= Nh

N
for

h = 1, . . . , L, from which it follows that nh = nNh

N
for h = 1, . . . , L. For the data in Table 3.6

this yields n1 = 300 850
1190

= 214, n2 = 300 280
1190

= 71, and n3 = 300 60
1190

= 15. The variance of
the estimated mean turnover in this sample can be calculated with (3.5), yielding

V(ȳst) =
1− n

N

n

L∑
h=1

WhS
2
h =

1− n
N

nN

L∑
h=1

NhS
2
h

=
1− 300

1190

(300)(1190)

(
(850)(62) + (280)(152) + (60)(702)

)
= 0.8120.

Comparing the variance for proportional allocation with that for Neyman allocation, we
see that the variance for proportional allocation is more than four times larger than that
for Neyman allocation. This is caused by the very large differences between the standard
deviations in the three strata.

So far we assumed that the total sample size is given or fixed. Sometimes this is not the
best way to proceed. Generally, sampling methods are designed to obtain results that are
as accurate as possible for costs that are as small as possible. This cost aspect can be taken
into account into the calculations by not assuming a given sample size but a given budget.
If the variable costs are different from stratum to stratum, then the simplest cost function
that can be considered is the linear cost function

C =
L∑
h=1

nhch, (3.16)

where ch is the variable cost of one unit in stratum h. In this situation the variance (3.3) of
the estimated mean ȳst is a minimum for a specified total cost C, and the cost is a minimum
for a specified variance V(ȳst) when nh ∝ WhSh/

√
ch (where ∝ means “proportional to”).

Proof. Let ah and bh be two sets of arbitrary numbers (h = 1, . . . , L). Then the Cauchy-
Schwartz inequality states that

(
∑

a2
h)(
∑

b2
h) ≥ (

∑
ahbh)

2, (3.17)

with equality if and only if ah = λbh for all h = 1, . . . , L where λ is some positive number.
The product on the left of (3.17) is therefore globally minimized by choosing ah proportional



38 CHAPTER 3. STRATIFIED RANDOM SAMPLING

to bh for all h = 1, . . . , L. We now use the Cauchy-Schwartz inequality to minimize the
product V(ȳst)C with respect to nh, and first note that

V(ȳst) =
L∑
h=1

W 2
h

S2
h

nh
(1− fh) =

L∑
h=1

W 2
h

S2
h

nh
−

L∑
h=1

W 2
h

S2
h

Nh

. (3.18)

Since the last term
∑L

h=1W
2
h
S2
h

Nh
in (3.18) is a constant with respect to nh, the minimization

of V(ȳst)C is equivalent to the minimization of
(∑L

h=1 W
2
h
S2
h

nh

)
C. Now define ah = Wh

Sh√
nh

and bh =
√
nhch, then it follows from (3.17) that(∑

W 2
h

S2
h

nh

)
(
∑

nhch) ≥ (
∑

WhSh
√
ch)

2, (3.19)

and the global minimum (
∑
WhSh

√
ch)

2 is obtained by choosing
√
nhch = λWh

Sh√
nh

, which

can also be written as nhch = λ2W 2
h
S2
h

nh
and thus as n2

hch = λ2W 2
hS

2
h from which it follows

that

nh = λ
WhSh√
ch

, (3.20)

for h = 1, . . . , L, and for some proportionality constant λ. This ends the proof.
It follows from (3.20) that

n =
L∑
h=1

nh = λ
L∑
h=1

WhSh√
ch

,

and λ can therefore be written as

λ =
n∑L

h=1 WhSh/
√
ch
. (3.21)

Substitution of (3.21) in (3.20) yields

nh =
nWhSh/

√
ch∑L

h=1WhSh/
√
ch
, (3.22)

and therefore

nh
n

=
WhSh/

√
ch∑L

h=1 WhSh/
√
ch
.

The fact that nh should be proportional to WhSh/
√
ch implies that for a given stratum a

larger random sample should be taken if

1. the stratum is larger;

2. the variability within the stratum is larger;

3. sampling is cheaper in the stratum.
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If the total cost C of the survey is fixed then the optimal total sample size is found by
substitution of (3.22) in (3.16) yielding

n =
C
∑L

h=1NhSh/
√
ch∑L

h=1 NhSh
√
ch

. (3.23)

On the other hand, if the variance V(ȳst) is fixed, then the optimal total sample size is found
by substitution of (3.22) in (3.3) yielding, after quite some algebra,

n =
(
∑L

h=1WhSh
√
ch)
∑L

h=1 WhSh/
√
ch

V(ȳst) + 1
N

∑L
h=1 WhS2

h

, (3.24)

with Wh = Nh/N .

Example 3-6. In Example 3-5 no account was taken for possible differences in observa-
tion costs between the three strata. For companies owning only one ship, information has
to be obtained from the captain of the ship who will often be traveling, implicating high
costs for the data collection process. On the other hand, companies with more ships have
an office on shore where the required information can be obtained, implicating lower costs.
Assume that the costs of an interview for a one ship company are 30 euro’s while those for
a company with more than one ship are 15 euro’s. Also assume that the total budget for
variable costs in the survey is 6480,- euro’s. Find the optimal allocation with fixed budget.

Table 3.7: Turnover of inland shipping companies in three strata, including variable costs.

Stratum h Nh Sh (in 1000 euro) ch NhSh
√
ch nhch nh

1 850 6 30 27,933.85 3000 100
2 280 15 15 16,266.53 1740 116
3 60 70 15 16,266.53 1740 116

Total 1,190 - - 60,466.91 6480 332

Answer. The optimal allocation with fixed budget is found using the numbers given in
Table 3.7. Given the budget of 6480 euro’s, the optimal sample size is obtained from (3.23)
yielding

n =
C
∑L

h=1 NhSh/
√
ch∑L

h=1NhSh
√
ch

=
(6480)(3100)

60, 455.91
= 332.215.

The stratum sample sizes are then obtained from (3.22)

nh =
nWhSh/

√
ch∑L

h=1WhSh/
√
ch

=
nNhSh/

√
ch∑L

h=1 NhSh/
√
ch

=
332NhSh/

√
ch

3100
,

giving n1 = 99.72, n2 = 116.14, and n3 = 116.14, or rounded n1 = 100, n2 = 116, and
n3 = 116, see the last column in Table 3.7.
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Again we have over-sampling in the third stratum. So we allocate all 60 companies in
the third stratum to n1 which costs (60)(15) = 900 euro’s, and optimally reallocate the
remaining 6480− 900 = 5580 euro’s to the first two strata. This is achieved by recomputing
(3.23) with C = 5580 and summing over the first two strata only:

n =
C
∑2

h=1 NhSh/
√
ch∑2

h=1NhSh
√
ch

=
(5580)(2015.56)

44, 200.38
= 254.45,

or n = 254 rounded. The sample sizes are again obtained from (3.22)

nh =
nNhSh/

√
ch∑L

h=1NhSh/
√
ch

=
254NhSh/

√
ch

2015.56
,

giving n1 = 117.34 and n2 = 136.66, or n1 = 117 and n2 = 137 rounded. The variance of the
estimated mean turnover in this stratified sample of n = 117 + 137 + 60 = 314 companies is

V(ȳst) =

(
850

1190

)2(
62

117

)(
1− 117

850

)
+

(
280

1190

)2(
152

137

)(
1− 137

280

)
+

(
60

1190

)2(
702

60

)(
1− 60

60

)
= 0.1818,

see (3.3). Note that stratum 3 again does not contribute to this variance because the complete
stratum of the population is sampled.

It may be noted that if ch = c, i.e., if the cost per unit is the same in all strata, then
the total cost equals C = cn, and optimum allocation for fixed cost reduces to optimum
allocation for fixed sample size, see (3.14). It is also very interesting to note that (3.24) then
can be written as

n =
(
∑L

h=1 WhSh
√
c)
∑L

h=1WhSh/
√
c

V(ȳst) + 1
N

∑L
h=1WhS2

h

=
(
∑L

h=1 WhSh)
2

V(ȳst) + 1
N

∑L
h=1 WhS2

h

, (3.25)

which is formula (3.33) for the minimal total sample size required under optimum allocation,
as we will see in Section 3.6!

3.5 Precision gains of stratified versus simple random

sampling

In this section a comparison is made between simple random sampling and stratified random
sampling with proportional and optimum allocation. If we let Vran, Vprop, and Vopt denote
the corresponding variances of the estimated population means, and if terms 1/Nh can be
ignored, it can be proven that

Vopt ≤ Vprop ≤ Vran, (3.26)
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where the optimum allocation is for fixed n, that is, with nh proportional to NhSh, see
Cochran (1977, pp.99). This means that the precision of optimum allocation for fixed n is
always higher than or equal to proportional stratification, and that the precision of propor-
tional stratification is always higher than or equal to simple random sampling.

Ideally the value of y itself should be used for stratification, the quantity to be measured,
because this would guarantee no overlap between strata, and the variance within strata
would be much smaller than the overall-variance, especially when there are many strata.
This is illustrated by Example 3-2 in Section 3.2 where the population consisted of the size
of 64 cities in 1930, stratified by size. Although there were only two strata, proportional
stratification reduced the standard error from 2365 to 1372, while the optimum stratification
under Neyman allocation with n1 = n2 = 12 produced a further reduction to 1044.

In practice this is not possible of course, but it implies that large gains in precision can
be obtained if the following conditions are satisfied:

1. the population is composed of institutions varying widely in size;

2. the principal variables to be measured are closely related to the sizes of the institutions;

3. a good measure of size is available for setting up the strata.

All this implies that we should preferably stratify on an auxiliary variable that is highly
correlated with y. Such a variable is also known as a stratification variable.

The larger the differences between the strata means or totals are, the more proportional
allocation will outperform simple random sampling in terms of precision. It is therefore
important to construct the strata in such a way that the differences between the means or
totals are as large as possible. This is achieved by collecting units with small y values in
one stratum, and units with large y values in another stratum. The effect will be that the
differences within strata will be relatively small, thus splitting a heterogeneous population
into homogeneous subgroups.

Whereas proportional allocation only takes differences between strata means or totals into
account, in optimal allocation the differences in standard errors and costs between strata
are also taken into consideration. This implies that – compared to proportional allocation
– Neyman allocation yields population parameter estimates that are more precise when the
differences between the Sh are larger. Optimal allocation for given budget, on the other
hand, is more precise than Neyman allocation when the differences of the variable costs
between strata are larger.

3.6 Estimation of sample size with continuous data

Formulas for the determination of sample size under an estimated optimum allocation were
given in Section 3.4. In this section formulas are presented for any allocation. It is assumed
that the estimate has a specified variance V . If, instead, the margin of error d has been spec-

ified (see Section 2.8), we use V =
(
d
t

)2
, where t is again the normal deviate corresponding

to the allowable probability that the error will exceed the desired margin d.
We start with the situation where we want to estimate the population mean Ȳ . Let sh

denote the estimate of Sh and let nh = whn where the wh have been chosen. Then it follows
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from formula (3.3) for the variance of the sampling distribution of the mean ȳst that

V(ȳst) =σ2
ȳst =

L∑
h=1

W 2
h

s2
h

nh
(1− nh

Nh

) =
L∑
h=1

W 2
h

s2
h

nh
−

L∑
h=1

W 2
h

s2
h

nh

nh
Nh

=
L∑
h=1

W 2
h

s2
h

whn
−

L∑
h=1

W 2
h

s2
h

Nh

=
1

n

L∑
h=1

W 2
h

s2
h

wh
−

L∑
h=1

N2
h

N2

s2
h

Nh

=
1

n

L∑
h=1

W 2
h

s2
h

wh
− 1

N

L∑
h=1

Nh

N
s2
h =

1

n

L∑
h=1

W 2
h

s2
h

wh
− 1

N

L∑
h=1

Whs
2
h.

Thus, the anticipated sampling variance V(ȳst) is

V(ȳst) =
1

n

L∑
h=1

W 2
hs

2
h

wh
− 1

N

L∑
h=1

Whs
2
h, (3.27)

with Wh = Nh/N and wh = nh/n.
Proceeding just as in Section 2.8, if we let d = |µ − ȳst| be the absolute sampling error

d that we are willing to tolerate with some predefined probability, then this means that
d ≤ tσȳst , from which the minimal sample size can be determined by solving

d = t

√√√√ 1

n

L∑
h=1

W 2
hs

2
h

wh
− 1

N

L∑
h=1

Whs2
h (3.28)

with respect to n. This yields the following general formula for the minimal sample size n

n =

∑ W 2
hs

2
h

wh

V + 1
N

∑
Whs2

h

, (3.29)

where V =
(
d
t

)2
. If the finite population correction in (3.29) is ignored, we have as a first

approximation

n0 =
1

V

∑W 2
hs

2
h

wh
. (3.30)

If n0/N is not negligible, the sample size may be calculated as

n =
n0

1 + 1
NV

∑
Whs2

h

. (3.31)

When optimum allocation for fixed n is required where wh should be proportional to Whsh,
we know that

nh = n
NhSh∑
NhSh

,

see (3.14), from which it follows that

wh =
nh
n

=
NhSh∑
NhSh

=
WhSh∑
WhSh

. (3.32)
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Substitution of (3.32) in (3.29) yields the sample size formula under optimum allocation:

n =
(
∑
Whsh)

2

V + 1
N

∑
Whs2

h

. (3.33)

Substitution of wh = Wh = Nh/N for proportional allocation in (3.29) shows that

n0 =

∑
Whs

2
h

V
(3.34)

for negligible fpc and

n =
n0

1 + n0

N

(3.35)

if n0/N is not negligible.
As a double check on these formulas it is interesting to note that when there is only one

stratum in the population, i.e., when L = 1, we have that Nh = N , Wh = Nh/N = 1, and
wh = nh/n = 1, meaning that (3.29) then simplifies to

n =

∑ W 2
hs

2
h

wh

V + 1
N

∑
Whs2

h

=
s2

V + 1
N
s2

=
s2

d2

t2
+ 1

N
s2

=
t2s2

d2 + 1
N
t2s2

,

which is equal to the sample size formula (2.51) for simple random sampling, as expected.
When working with a relative error in estimating the mean of a population, d should be

replaced by dȲ with 0 < d < 1. In this case V is therefore defined as V =
(
dȲ
t

)2

in formulas

(3.29), (3.30), (3.31), (3.33), and (3.34).
When we want to estimate the population total Y = NȲ , then it follows from formula

(3.7) for the variance of the sampling distribution of the total that

V(Ŷst) =σ2
Ŷst

=
L∑
h=1

Nh(Nh − nh)
s2
h

nh
=

L∑
h=1

N2
h

s2
h

nh
−

L∑
h=1

Nhnh
s2
h

nh

=
L∑
h=1

N2
hs

2
h

whn
−

L∑
h=1

Nhs
2
h =

1

n

L∑
h=1

N2
hs

2
h

wh
−

L∑
h=1

Nhs
2
h.

Letting d = |Y − Ŷst| = |Nµ−Nȳst|, we have that d ≤ tσŶst from which it follows that

d = t

√√√√ 1

n

L∑
h=1

N2
hs

2
h

wh
−

L∑
h=1

Nhs2
h. (3.36)

Solving (3.36) with respect to n, we obtain the following general formula for sample size:

n =

∑ N2
hs

2
h

wh

V +
∑
Nhs2

h

, (3.37)
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with V =
(
d
t

)2
. For Neyman allocation the formula is obtained by substitution of (3.32) in

(3.37) yielding

n0 =
(
∑
Nhsh)

2

V
, (3.38)

if the fpc is negligible, and

n =
n0

1 + 1
V

∑
Nhs2

h

, (3.39)

if it is not. For proportional allocation we substitute wh = Nh/N in (3.37) and obtain

n0 =
N

V

∑
Nhs

2
h, (3.40)

if the fpc is negligible, and

n =
n0

1 + n0

N

. (3.41)

if it is not.
As a double check on these formulas it is again interesting to note that when there is only

one stratum in the population, i.e., when L = 1, we have that Nh = N , Wh = Nh/N = 1,
and wh = nh/n = 1, meaning that (3.37) then simplifies to

n =

∑ N2
hs

2
h

wh

V +
∑
Nhs2

h

=
N2s2

V +Ns2
,

=
N2s2

d2

t2
+Ns2

=
t2s2

d2

N2 + t2s2

N

,

which is equal to the sample size formula (2.61) for simple random sampling, as it should
be.

If we finally use a relative sampling error dY with 0 < d < 1 in order to obtain an
estimate of the population total Y , then V in (3.37), (3.38), (3.39), and (3.40) is defined as

V =

(
dY

t

)2

=

(
dNȲ

t

)2

. (3.42)

Example 3-7. In order to estimate enrollments for the 1946-1947 academic year in a
population of 196 colleges in the United States, these colleges were arranged in six strata.
The first five strata were constructed by size of institution, while the sixth stratum contained
colleges for women only. Estimates sh of the Sh were computed from the results for the 1943-
1944 academic year. An optimum stratification based on these sh was used. The objective
was a coefficient of variation of 5% in the estimated total enrollment. In 1943 the total
enrollment for this group of 196 colleges was 56, 472. Table 3.8 shows the values of Nh, sh,
and Nhsh which were known before determining n. Find the sample size n, and the optimal
allocation of the estimated sample size to the six strata.
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Table 3.8: Data for estimating sample size.

Stratum Nh sh Nhsh nh
1 13 325 4,225 9
2 18 190 3,420 7
3 26 189 4,914 10
4 42 82 3,444 7
5 73 86 6,278 13
6 24 190 4,560 10

Totals 196 26,841 56

Answer. Since the coefficient of variation (cv) of a total is S
NȲ

= S
56,472

, and we require a

cv of 5%, the desired standard error S is S = (0.05)(56, 472) = 2823.6 from which it follows
that the required variance is V = S2 = 2823.62 = 7972716.96. The estimated sample size
under optimal allocation is then found with (3.39) yielding

n =
(
∑
Nhsh)

2

V +
∑
Nhs2

h

=
26, 8412

7972716.96 + 4, 640, 387
= 57.12.

Neyman allocation to the six strata then follows from (3.14)

nh = n
Nhsh∑
Nhsh

= 57.12
Nhsh

26, 841
,

giving – after rounding – the numbers shown in the last column of Table 3.8.

Example 3-8. Continuing Example 2-6 in Section 2.8, suppose that we stratify the
same population into two strata of N1 = 3 and N2 = 4 million car drivers, and that the
mean number of kilometers driven in these two strata are Ȳ1 = 7000 and Ȳ2 = 21000,
respectively. Note that the mean number of kilometers driven in the total population is
still N1Ȳ1+N2Ȳ2

N
= 15000 = Ȳ , as before. Determine the required sample size for estimation

of the population total under proportional and optimum allocation 1) when the standard
deviations in the two strata are S1 = S2 = 5000, 2) when the standard deviations in the
two strata are S1 = S2 = 3000, and 3) when the standard deviations in the two strata are
S1 = 5000 and S2 = 1000. Use a precision of 1% in estimating the population total with a
probability of 1 out of 20 of being unlucky.

Answer. With this precision and probability, d = 0.01 and t = 1.96 meaning that

V =
(
dNȲ
t

)2

=
(

(0.01)(7,000,000)(15,000)
1.96

)2

, see (3.42). Applying formula (3.40) to the situation

that S1 = S2 = 5000 for proportional allocation we obtain

n0 =
N

V

∑
Nhs

2
h =

7, 000, 000

V
((3, 000, 000)(5, 0002) + (4, 000, 000)(5, 0002)) = 4, 268,

with the assignment to the individual strata following from nh = n0
Nh

N
yielding n1 = 1, 829
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and n2 = 2, 439. Applying formula (3.38) for optimum allocation we again find that

n0 =
(
∑
Nhsh)

2

V
=

((3, 000, 000)(5, 000) + (4, 000, 000)(5, 000))2

V
= 4, 268,

with the assignment to the individual strata following from (3.14), and yielding n1 = 1, 829
and n2 = 2, 439. Note that these results are exactly the same as for simple random sampling,
see Example 2-6.

When S1 = S2 = 3, 000, we have for proportional allocation that

n0 =
N

V

∑
Nhs

2
h =

7, 000, 000

V
((3, 000, 000)(3, 0002) + (4, 000, 000)(3, 0002)) = 1, 537,

with the assignment to the individual strata following from nh = n0
Nh

N
yielding n1 = 659

and n2 = 878, while for optimum allocation, we also obtain

n0 =
(
∑
Nhsh)

2

V
=

((3, 000, 000)(3, 000) + (4, 000, 000)(3, 000))2

V
= 1, 537,

with the assignment to the individual strata following from (3.14), yielding n1 = 659 and
n2 = 878, just as with proportional allocation. This shows that stratified random sampling
is more precise than simple random sampling, as long as the standard deviations in the
population strata are – on the whole – smaller than the standard deviation in the total
population. It also shows that proportional and optimum allocation have the same precision
as long as the standard deviations in the strata are all equal.

When S1 = 5, 000 and S2 = 1, 000, on the other hand, we have for proportional allocation
that

n0 =
N

V

∑
Nhs

2
h =

7, 000, 000

V
((3, 000, 000)(5, 0002) + (4, 000, 000)(1, 0002)) = 1, 927,

with the assignment to the individual strata following from nh = n0
Nh

N
yielding n1 = 826

and n2 = 1101, and for optimum allocation

n0 =
(
∑
Nhsh)

2

V
=

((3, 000, 000)(5, 000) + (4, 000, 000)(1, 000))2

V
= 1, 258,

with the assignment to the individual strata following from (3.14), yielding n1 = 993 and
n2 = 265.

Summarizing, this example confirms that

• For given precision, stratified random sampling with proportional and/or optimum
allocation always requires a smaller sample size than simple random sampling, unless
the standard deviations in the population strata are all equal to the standard deviation
of the total population;

• For given precision, proportional and optimum allocation require the same sample
size when the standard deviations in the population strata are the same. When the
standard deviations in the population strata are different, however, the required sample
size for optimum allocation is always smaller than that for proportional allocation.
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3.7 Stratified sampling for proportions

If we want to estimate the proportion of units in the population that fall into some defined
class C, the ideal stratification is obtained by subdividing the population into two strata: the
first stratum containing all units that belong to class C, and the second stratum containing
the rest of the population. If this can not be achieved, we try to construct strata such that
the proportion in class C varies as much as possible from stratum to stratum.

Letting

Ph =
Ah
Nh

and ph =
ah
nh

denote the proportions of units in class C in the hth stratum and in the sample from
that stratum, respectively, the unbiased estimate of the proportion in the whole population
appropriate to stratified random sampling is

pst =
∑ Nhph

N
, (3.43)

and the variance of pst is

V(pst) = σ2
pst =

1

N2

∑ N2
h(Nh − nh)
Nh − 1

PhQh

nh
, (3.44)

see Cochran (1977, p.108) for a proof.
In almost all applications the terms 1/Nh will be negligible, even if the finite population

is not negligible, in which case (3.44) simplifies into

V(pst) = σ2
pst =

1

N2

∑
Nh(Nh − nh)

PhQh

nh
=
∑W 2

hPhQh

nh
(1− fh). (3.45)

When the fpc can also be ignored we obtain

V(pst) = σ2
pst =

∑W 2
hPhQh

nh
. (3.46)

With proportional allocation where nh = nNh

N
for h = 1, . . . , L, the variance of the

sampling distribution of pst is

V(pst) = σ2
pst =

N − n
N

1

nN

∑ N2
hPhQh

Nh − 1
.
=

1− f
n

∑
WhPhQh. (3.47)

The sample estimate of the variance is obtained by substituting phqh/(nh−1) for the unknown
PhQh/nh in any of the formulas above.

For Neyman allocation the variance V(pst) is minimized for fixed sample size by choosing

nh ∝ Nh

√
Nh/(Nh − 1)

√
PhQh

.
= Nh

√
PhQh

from which it follows that

nh
.
= n

Nh

√
PhQh∑

Nh

√
PhQh

. (3.48)
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Substitution of (3.48) in (3.45) yields – after some algebra – the minimum variance of the
sampling distribution of proportions under optimum allocation with given sample size:

Vmin(pst) =
(
∑
Wh

√
PhQh)

2

n
−
∑
WhPhQh

N
, (3.49)

where the second term in (3.49) is the finite population correction.
For Neyman allocation the variance V(pst) is minimized for fixed cost C =

∑
chnh by

taking

nh
.
= n

Nh

√
PhQh/ch∑

Nh

√
PhQh/ch

. (3.50)

The value of n is found as in Section 3.4.

3.8 Gains in precision in stratified sampling for pro-

portions

When the variable costs per unit are the same in all strata, the following two rules usually
apply

1. the gain in precision from stratified random sampling over simple random sampling is
small or modest unless the Ph vary greatly from stratum to stratum;

2. optimum allocation for fixed n hardly improves over proportional allocation if all Ph
lie between 0.1 and 0.9.

Table 3.9: Relative precision of simple versus stratified random sampling for proportions.

simple stratified relative
100nV(p)/(1− f) 100nV(pst)/(1− f) precision

Ph = 100PQ = 100(1
3
)
∑
PhQh 100PQ/((1

3
)
∑
PhQh)

0.4 0.5 0.6 2500 2433 103%
0.3 0.5 0.7 2500 2233 112%
0.2 0.5 0.8 2500 1900 132%
0.1 0.5 0.9 2500 1433 174%

As an illustration of the first rule consider the data in Table 3.9 where stratified random
with proportional allocation is compared with simple random sampling for three strata of
equal size, meaning that Wh = 1

3
. Four cases are included, ranging from very similar pro-

portions (0.4, 0.5, and 0.6) in the three strata, to very different proportions (0.1, 0.5, 0.9).
In all cases the proportion in the total population equals P = 0.5. The variances of simple
random sampling (where V(p) is calculated from (2.36)) and of stratified random sampling
(where V(pst) is calculated according to (3.47)) corresponding to these four cases are given in
the second and the third column of Table 3.9, respectively. The last column, which contains
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Table 3.10: Relative precision of proportional versus optimal allocation for proportions.

P0 0.4 or 0.6 0.3 or 0.7 0.2 or 0.8 0.1 or 0.9 0.05 or 0.95
RP(%) 100.0 99.8 98.8 94.1 86.6

the relative precision of stratified over simple random sampling, indicates that the gain in
precision is only large in the last two cases.

As far as the second rule is concerned, ignoring the fpc it follows from (3.49) and (3.47)
that the minimum variances for optimum allocation and proportional allocation for fixed n
are equal to

Vopt(pst) =
(
∑
Wh

√
PhQh)

2

n
and Vprop(pst) =

∑
WhPhQh

n

respectively. The relative precision of optimal over proportional allocation is therefore

Vopt(pst)

Vprop(pst)
=

(
∑
Wh

√
PhQh)

2∑
WhPhQh

. (3.51)

Assuming that we have two strata of equal size (where W1 = W2) and fixing P1 on 0.5,
for varying values of P2 the relative precisions obtained from (3.51) have been collected in
Table 3.10. It is clear from this table that the gain in precision for optimum allocation
is very limited, even for proportions as small as 0.1 (or as large as 0.9) in stratum 2. In
most cases the simplicity of proportional stratification more than compensates for this minor
loss in precision, at least when the variable costs are identical in all strata. It follows from
Table 3.10, however, that considerable gains can be achieved with optimum allocation if the
proportions are very small (or very large) and there are large differential costs in different
strata.

3.9 Estimation of sample size for proportions

Formulas for the estimation of sample size for proportions can be derived from the more
general formulas in Section 3.6. Letting V denote the desired variance in the estimate of
the proportion P for the whole population, it follows from (3.47) that the formulas for
proportional allocation are

n0 =

∑
Whphqh
V

, n =
n0

1 + n0

N

, (3.52)

while it follows from (3.49) that the formulas for optimum allocation are

n0 =
(
∑
Wh
√
phqh)

2

V
, n =

n0

1 + 1
NV

∑
Whphqh

, (3.53)

where n0 is the first approximation ignoring the fpc, and n is the corrected value if the fpc
is not negligible. In the latter formulas the factors Nh/(Nh − 1) are assumed to be (almost)



50 CHAPTER 3. STRATIFIED RANDOM SAMPLING

equal to one. The same formulas apply if ph, qh, V , et cetera, are expressed in percentages.

If we use an absolute error d = |p−P |, then V =
(
d
t

)2
; if a relative error dP is applied where

0 < d < 1, then V =
(
dP
t

)2
. Finally, if the total number NP in the population in class C

needs to be estimated, then all variances should be multiplied by N2.

Example 3-9. Continuing Examples 2-6 and 2-8 in Section 2.8, for the same population
we again wish to estimate the percentage of car drivers wearing a seat belt, but now with the
same strata as in Example 3-8. So we have N1 = 3 and N2 = 4 million car drivers meaning
that W1 = 3

7
and W2 = 4

7
. Let the proportion of car drivers wearing a seat belt in these two

strata be P1 = 0.7 and P2 = 0.875. Note that the proportion in the total population then
still is the same as in Example 2-8, since pst = W1P1 + W2P2 = (3

7
)(0.7) + (4

7
)(0.875) = 0.8

according to (3.43). How large should the sample be when we want the proportion to lie
in the range P ± 0.05 except for a 1 in 20 chance (use both proportional and optimum
allocation)? And what if we want a precision of P ± 0.01 except for a 1 in 20 chance?

Answer. In this situation t = 1.96. For a precision of 5% we have that d = 0.05 and
applying (3.52) we need a sample of

n0 =

∑
Whphqh
V

=
(3

7
)(0.7)(0.3) + (4

7
)(0.875)(0.125)

(0.05
1.96

)2
= 234

car drivers when using proportional allocation (with n1 = W1n0 = 100 and n2 = W2n0 =
134), and applying (3.53) we need a sample of

n0 =
(
∑
Wh
√
phqh)

2

V
=

(3
7
)
√

(0.7)(0.3) + (4
7
)
√

(0.875)(0.125)

(0.05
1.96

)2
= 228

car drivers when using optimum allocation with n1 = 116 and n2 = 112 from (3.48).
For a precision of 1%, on the other hand, d = 0.01 and we obtain

n0 =
(3

7
)(0.7)(0.3) + (4

7
)(0.875)(0.125)

(0.01
1.96

)2
= 5, 858

car drivers from (3.52) when using proportional allocation (with n1 = W1n0 = 2, 511 and
n2 = W2n0 = 3, 348), and

n0 =
(3

7
)
√

(0.7)(0.3) + (4
7
)
√

(0.875)(0.125)

(0.01
1.96

)2
= 5, 705

car drivers from (3.53) when using optimum allocation with n1 = 2, 908 and n2 = 2, 798
from (3.48).

In this example we see that the improvement of optimum allocation over proportional
allocation is indeed quite small, as already discussed in Section 3.8. But we also note a
considerable improvement in precision of stratified random sampling over simple random
sampling for proportions, especially for the 1% situation (compare with Example 2-8).
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3.10 Choice and construction of strata

So far, we have assumed that the type and the number of strata L in stratified random
sampling are given and known. In practice, however, it is the responsibility of the researcher
to construct these strata. In this section we discuss the following issues:

• What information is most useful for the construction of strata?

• What boundaries for the strata should be used?

• How many strata should be used?

The answers to these questions depend upon the purpose of the use of stratified sampling. If
stratification was chosen for practical reasons, such as a decentralised sampling frame or the
need for different observation methods in different parts of the population (see Section 3.1),
then there is hardly any choice. Often, however, stratification is used in order to improve
the precision of the estimates. In this case, it makes a difference whether we are primarily
interested in the total population or in parts of that population. The requirement that the
estimates must be as precise as possible for both the total population and its parts is usually
impossible to fulfill. The optimal stratifications and allocations for these two conditions will
usually be quite different, and a compromise will have to be made. When subpopulations are
involved Moors and Muilwijk (1975) advise to choose these subpopulations as strata because
sample data referring to subpopulations that contain only part of a stratum are relatively
imprecise, as discussed in Section 2.10 and Section 3.11.

For the situation where the primary purpose is to make comparisons between different
strata, we refer to Cochran (1977, Section 5A.13). Here we restrict the discussion to the
situation where we require estimates to be as precise as possible for the population as a
whole.

As we already mentioned in Section 3.5, concerning the choice of the stratification vari-
able(s), we should preferably stratify on an auxiliary variable that is highly correlated with
y. When the stratification variable is continuous, and when we know its frequency distribu-
tion in the population, and this frequency distribution has more classes than the number of
strata, then the cumulative f-rule of Dalenius and Hodges (1957) is a practical method for
deciding which classes should be merged. This works as follows. Compute the square root
of the frequency f of each class interval of the stratification variable, and choose those limits
for the strata for which the total frequency per stratum is as equal as possible. If the interval
sizes are different the class frequencies must first be multiplied by the corresponding interval
size before their square root is taken. By choosing equal sample sizes for the chosen number
of strata the allocation is approximately optimal. See Example 3-10 for an illustration of
the cumulative f-rule taken from Moors and Muilwijk (1975).

Example 3-10. We want to estimate the production in a branch of business by stratified
random sampling. From a previous year we have the frequency distribution of the value of
production shown in Table 3.11. Use the cumulative f-rule to derive the optimal limits of
three strata from this table.

Answer. Since the interval sizes of the classes in the frequency distribution are different,
we first multiply the class frequencies f with their interval sizes b, before taking their square
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Table 3.11: Frequency distribution of a stratification variable, and the cumulative f -rule.

Class interval Number of Interval size b
√
bf Cumulated Strata

(in thousand euros) companies f
√
bf limits

< 100 3000 100 547 547
100 < 250 2000 150 547 1094 < 250
250 < 500 1000 250 500 1594

500 < 1000 400 500 447 2041 250 < 1000
1000 < 2500 100 1500 387 2428

2500 < 10000 20 7500 387 2815 ≥ 2500
≥ 10000 10 20000 447 3262

Total 6530 3262

root. The limits of the strata are then chosen in such a way that each of the three strata
contains approximately one third of the total of

√
bf . The exact limits should have been

3262
3

= 1087 and (2)(3262)
3

= 2175; the limits in the last column of Table 3.11 are the closest
approximation to these numbers. The result is that the total sample size is distributed
evenly over the three strata. Note that the value of b = 20000 for the highest class interval
is based on the fact that the largest company had a production value of 30000 euro.

So far we have assumed that the sizes of the strata in the population are known. Should
this not be the case then the method of double sampling for stratification discussed in
Section 7.3.3 can be considered.

As concerns the number of strata, each increase in the number of strata in principle
has the effect of decreasing the variance. In practice, however, it is found that the gain in
precision for more than six to ten strata is usually very small. The exact limit depends on
the strength of association between the stratification and the research variable: the higher
their correlation, the more strata can be chosen. However, since more strata also involve
higher costs the number of strata is seldom larger than ten.

This applies especially when only one stratification variable is used and when estimates
are only required for the total population. When there are several stratification variables it
is generally better to stratify with respect to different stratification variables simultaneously,
using not too many classes for each variable, for example three or four.

If separate estimates are required for parts of the population it is often a good idea to use
a fairly large number of strata. As stated earlier, these strata should preferably be chosen
in such a way that the subpopulations of interest can be obtained by joining these strata
together.

A practical application of stratified random sampling for the estimation of the total num-
ber of kilometers driven by passenger cars is provided in Molnar, Moritz, Smeets, Buelens,
and Dohmen (2009). They base their estimation on data from a Dutch commercial database
called “Nationale Autopas ” (which is Dutch for “National Car Pass”) containing odometer
readings collected at the moment a car visits a service station for a periodic roadworthiness
check (called APK in Dutch) or a car service. Besides a fixed sum for handling-costs, the



3.11. SUBPOPULATIONS 53

owners of the database also charge a small amount for each odometer reading. The available
budget per year is limited. Therefore, the sample design is developed to achieve a maximum
precision of the traffic estimates for given budget.

In another database of the Dutch Road Traffic authorities, all motor vehicles in the
Netherlands are registered. The latter database also contains several technical features of
each car. This information was used to set up an optimal allocation scheme for stratified
random sampling. While sampling Molnar, Moritz, Smeets, Buelens, and Dohmen (2009)
stratified by the following variables:

• year of construction of the car,

• fuel type, three types: 1) Petrol, 2) Diesel, and 3) Other, and

• ownership, two categories: 1) private and 2) business.

The use of these stratification variables improves the precision of the sample estimate of the
total number of kilometers driven by passenger cars because newer cars tend to be used more
intensively than older cars, cars running on diesel and gas oil tend to cover more kilometers
than cars running on petrol, and cars used for business also tend to be used more intensively
than privately owned cars. For estimates of the variances in each of these strata, Molnar,
Moritz, Smeets, Buelens, and Dohmen (2009) used older samples from the NAP database.

3.11 Subpopulations

When we have subpopulations that cut through the strata, we need to distinguish between
three situations:

• The size of the subpopulation is known in each stratum;

• We only know the total size of the subpopulation;

• We do not know anything about the size of the subpopulation.

We first consider the most simple situation where the size of the subpopulation is known in
each stratum h = 1, . . . , L. Let Ah denote this size, and ah the size of the subpopulation in
the sample drawn from stratum h. Further let Ȳsh and S2

sh denote the mean and variance of
the subpopulation in stratum h. Then

ȳsh =
1

ah

ah∑
i=1

yhi (3.54)

and

s2
sh =

1

ah − 1

ah∑
i=1

(yhi − ȳsh)2 (3.55)

are unbiased estimators of these subpopulation parameters in stratum h. For the total of
the complete subpopulation we have the estimators

Ŷs =
L∑
h=1

Ahȳsh =
L∑
h=1

Ah
ah

ah∑
i=1

yhi (3.56)
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and

v(Ŷs) =
L∑
h=1

A2
hs

2
sh

ah

(
1− ah

Ah

)
. (3.57)

Since the total number of elements in the subpopulation is A =
∑L

h=1 Ah, dividing (3.56) and
(3.57) by A and A2 respectively yields unbiased estimators of the submean and its variance:

ˆ̄Ys =
Ŷs
A

=
1

A

L∑
h=1

Ahȳsh (3.58)

and

v( ˆ̄Ys) =
v(Ŷs)

A2
=

1

A2

L∑
h=1

A2
hs

2
sh

ah

(
1− ah

Ah

)
. (3.59)

Next, we consider the situation where the total size A of the subpopulation is known,
but not the sizes of Ah per stratum. Formulas (3.56), (3.57), (3.58), and (3.59) are then no
longer applicable. Just as in Section 2.10 we therefore need to introduce the variable

y
′

i =

{
yi, if the unit is in the subpopulation,

0, if the unit is not in the subpopulation.

An unbiased estimator of the mean of this variable in stratum h is

ȳ
′

h =
1

nh

nh∑
i=1

y
′

hi =
1

nh

ah∑
i=1

yhi =
ah
nh
ȳsh,

as a result of (3.54). Replacement of the ratio Ah

ah
in (3.56) with Nh

nh
yields the following

estimator of the subtotal in stratum h:

Nhȳ
′

h =
Nh

nh

ah∑
i=1

yhi, (3.60)

see also (2.88). The estimator of the grand subtotal in the population is then

Ŷs =
L∑
h=1

Nhȳ
′

h =
L∑
h=1

Nh

nh

ah∑
i=1

yhi. (3.61)

Analogous to (2.92) the estimated variance in each stratum h within the subpopulation is

s
′2
h =

1

nh − 1

nh∑
i=1

(y
′

hi − ȳ
′

h)
2, (3.62)

and the variance estimator of the grand subtotal Ŷs in the population is

v(Ŷs) = estimated σ2
Ŷs

=
L∑
h=1

N2
hs

′2
h

nh

(
1− nh

Nh

)
. (3.63)
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For estimates of the submean in the population we divide (3.61) by A and (3.63) by A2.
Finally, we consider the often encountered situation where even A, the total size of the

subpopulation, is unknown. In this case (3.61) and (3.63) can still be used for the estimation
of the subtotal and its variance because the value of A is not required in this formulas.
However, to obtain estimates of the submean and its variance, we need to estimate the value
of A. Since the observed sample fraction ah

nh
can be considered an estimate of the unknown

population fraction Ah

Nh
in each stratum (and thus Ah

Nh

.
= ah

nh
), an estimate of Ah in each

stratum is obtained with Âh = Nhah
nh

, and summing over all strata yields the estimate

Â =
L∑
h=1

Nhah
nh

(3.64)

for the size of the subpopulation. This value can then be used to estimate the submean with

ˆ̄Ys =
1

Â

L∑
h=1

Nhȳ
′

h. (3.65)

Unfortunately, we can not simply divide (3.63) by Â2 in order to obtain an estimate of the
variance of the submean, because submean (3.65) is now a ratio of two estimators. As will
be discussed in Section 6.1 this situation requires a different variance formula. Letting

s2
rh = s2

sh +
ah

nh − 1

(
1− ah

nh

)
(ȳsh − ˆ̄Ys)

2, (3.66)

where the subscript r stands for ratio, the variance of the submean is

v( ˆ̄Ys) = estimated σ2
ˆ̄Ys

=
1

Â2

L∑
h=1

N2
hs

2
rh

nh

(
1− nh

Nh

)
. (3.67)

We end by noting – and this will not come as a surprise – that not knowing the values of the
Ah’s and of A in the population comes with a price: a decrease in precision of the estimated
population parameters.
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Chapter 4

Sampling with unequal probabilities

In Chapter 2 we have considered simple random sampling where theN units in the population
all have the same probability 1

N
of ending up in the sample. In Chapter 3 we encountered

situations where the probabilities of being drawn are different for different groups of elements
(i.e., strata) in the population. In this chapter we consider the possibility of drawing elements
with probabilities that are different for each element of the population. With this procedure,
precision of population parameter estimates can sometimes be improved even more than in
stratified random sampling.

4.1 The mean and total, and their variances

Let zi denote the probability of element i (i = 1, . . . , N) being drawn from the population,
with

∑N
i=1 zi = 1. When a sample of n elements is drawn with replacement from this

population,

Ŷ =
1

n

n∑
i=1

yi
zi
, (4.1)

is an unbiased estimator of the total of the population. It is interesting to note that, when
zi = 1

N
for all i = 1, . . . , N , (4.1) yields

Ŷ =
1

n

n∑
i=1

yi
zi

=
1

n

n∑
i=1

Nyi = N
1

n

n∑
i=1

yi = Nȳ,

as in simple random sampling, see (2.6). The variance of this estimator is

V(Ŷ ) = σ2
Ŷ

=
1

n

N∑
i=1

zi(
yi
zi
− Y )2. (4.2)

A unbiased sample estimator of this variance is

v(Ŷ ) = estimated σ2
Ŷ

=
1

n(n− 1)

n∑
i=1

(
yi
zi
− Ŷ )2. (4.3)

57



58 CHAPTER 4. SAMPLING WITH UNEQUAL PROBABILITIES

For the mean and its variance we obtain the unbiased estimators

ˆ̄Y =
1

nN

n∑
i=1

yi
zi

(4.4)

from (4.1), and

v( ˆ̄Y ) = estimated σ2
ˆ̄Y

=
1

n(n− 1)N2

n∑
i=1

(
yi
zi
− Ŷ )2 (4.5)

from (4.3). As is illustrated in Example 4-1, compared with random sampling with equal
probabilities, the precision of the estimates is improved the most when the unequal proba-
bilities are chosen to be proportional to the values of the variable of interest. However, when
the probabilities are chosen inversely proportional to the values of the variable of interest,
then the precision of the estimates is even worse than in sampling with equal probabilities.

Example 4-1. Consider an artificial population of three elements, with probabilities of
being drawn and values on the variable of interest shown in Table 4.1. What are the variances
of the total for a random sample of n = 1 1) with the probabilities given in Table 4.1, 2)
with equal probabilities, and 3) with probabilities equal to z1 = 0.5, z1 = 0.3, and z1 = 0.2?

Table 4.1: Population of N = 3 elements with probabilities zi of being drawn.

i yi probability zi
1 3 0.2
2 9 0.3
3 18 0.5

Total 30 1.0

Answer. The variance of the total for the data in Table 4.1 is

V(Ŷ ) =
1

n

N∑
i=1

zi(
yi
zi
− Y )2 = 0.2(

3

0.2
− 30)2 + 0.3(

9

0.3
− 30)2 + 0.5(

18

0.5
− 30)2

= 45 + 0 + 18 = 63.

When using equal probabilities we find that

V(Ŷ ) =
1

3
((3)(3)− 30)2 +

1

3
((9)(3)− 30)2 +

1

3
((18)(3)− 30)2 = 147 + 3 + 192 = 342.

With probabilities equal to z1 = 0.5, z1 = 0.3, and z1 = 0.2, on the other hand, we obtain

V(Ŷ ) = 0.5(
3

0.5
− 30)2 + 0.3(

9

0.3
− 30)2 + 0.2(

18

0.2
− 30)2 = 288 + 0 + 720 = 1, 008.

Note that the variance of the total is the smallest for the probabilities in Table 4.1, because
these probabilities are approximately proportional to the values of yi in the population.
Choosing probabilities that are approximately inversely proportional to the values of yi in
the population, on the other hand, results in a variance of the total that is even larger than
when equal probabilities are used.
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4.2 Sampling with unequal probabilities in practice

Suppose we have an artificial population of three elements only: y1, y2, and y3. As in
Table 4.1, we want to draw y1 with a probability of z1 = 0.2, y2 with a probability of
z2 = 0.3, and y3 with a probability of z3 = 0.5. Note that these probabilities add up to 1, as
they should. We now want to draw a random sample of n = 1 element from this population.
How should we proceed?

We first of all note that it is always possible to write each of the N probabilities zi
(i = 1, . . . , N) as a ratio fi/FN such that fi is an integer and FN =

∑N
i=1 fi. In this example,

we can write z1 = 2
10

, z2 = 3
10

, and z3 = 5
10

with FN = 2 + 3 + 5 = 10. Now draw a random
number between 1 and FN = 10 inclusive. If this random number equals 1 or 2, then the
first element y1 is added to the sample, if the random number equals 3, 4, or 5, then the
sample is y2, and if it is 6, 7, 8, 9, or 10, then the sample is y3.

Table 4.2: Population of N = 9 municipalities and number of inhabitants (rounded).

Municipality Number of inhabitants Cumulative number of inhabitants
1 22,600 22,600
2 32,200 54,800
3 87,800 142,600
4 20,100 162,700
5 22,500 185,200
6 41,000 226,200
7 27,300 253,500
8 24,300 277,800
9 22,000 299,800

Next, suppose we want to draw a random sample of four out of a population of nine
municipalities with probabilities proportional to the number of inhabitants of each munici-
pality, see Table 4.2. Then the number of inhabitants are first cumulated, and four random
numbers are drawn from the range 1, . . . , 2998, the total number of inhabitants in hundreds
in the population. Should the numbers 669, 2503, 2349, and 2952 happen to be drawn, for
example, then the sample consists of municipalities 3, 7, again 7, and 9 respectively.
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Chapter 5

Two-stage sampling

So far we have assumed that a complete sampling frame is available, containing a list of
all the N elements of the population of interest, from which a simple or stratified random
sample of size n can easily be drawn. When such a list is not available, two-stage sampling
is an alternative option. In two-stage sampling, first a sample of n groups of units, often
called primary units, is drawn from the population. Then, in the second step, a sample of
m second-stage units or subunits, also called secondary units, is drawn from each of the n
chosen primary units. In this case it is assumed that a sampling frame for the primary units
is available, but not necessarily for all the second-stage units. Should the secondary units
be again made up of tertiary units, then there is a third stage, in which case we are dealing
with a three-stage sampling design. Other general terms for this type of sampling design are
subsampling and multi-stage sampling.

As an example, consider a survey amongst people of 12 years and older of a country.
In the first stage a sample of n primary units is drawn from all the N municipalities of
that country. In the second stage m persons of 12 years and older are drawn from each
of the n municipal registers. The advantage of this sampling design is that a list of all N
municipalities of country is easily obtained, while the list of all people of 12 years and older
of a country is not available. The second stage then only requires sampling from n municipal
registers.

When the primary units all contain the same number of subunits, this is called subsam-
pling or two-stage sampling with units of equal size. This situation is discussed in Section 5.1.
When the primary units all contain a different number of subunits, we have subsampling or
two-stage sampling with units of unequal size. This situation is taken up in Section 5.2.

To complicate matters further, at different stages different types of sampling designs
can be used, e.g., we may use simple random sampling at all stages, or stratified random
sampling at all stages, or simple random sampling at the first stage and stratified random
sampling at the second stage, et cetera. Here we only discuss simple random sampling in a
two-stage situation. For sample size estimation when stratified random sampling is used at
each stage, we refer to Section 10.9 of Cochran (1977).

When all of the secondary or subunits of the sampled primary units are observed then
the resulting sampling design is called cluster sampling, a sampling technique that we do
not discuss in this document. For the reader interested in the details of cluster sampling we
refer to Cochran (1977, Chapters 9 and 9A).

61



62 CHAPTER 5. TWO-STAGE SAMPLING

Figure 5.1: Two-stage sampling example.

5.1 Units of equal size

Let the total number of primary units in the population be denoted by N , from which n
units are sampled, and let the total number of secondary units in each primary unit of the
population be denoted by M from which m secondary units are sampled. The total number
of elements in the population is then NM , while the total sample size then consists of nm
elements. In Figure 5.1 this is illustrated for the situation where the total population consists
of 400 elements (i.e., cells). The population has further been divided into N = 50 primary
units, each consisting of M = 8 secondary units. From a total of N = 50 primary units,
n = 10 have been sampled in the first stage (as indicated by the red rectangles in Figure 5.1),
and from each of these latter 10 chosen primary units, m = 4 secondary units have been
sampled in the second stage (as indicated by the blue squares in Figure 5.1). This results in
a sample of nm = (10)(4) = 40 secondary units or elements from a population with a total
of 400 elements.
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We further use the following notation.

yij =value obtained for the jth subunit in the ith primary unit

ȳi =
m∑
j=1

yij
m

= sample mean in the ith primary unit

¯̄y =
n∑
i=1

ȳi
n

= overall sample mean

S2
1 =

∑N
i=1(Ȳi − ¯̄Y )2

N − 1
= population variance among primary unit means

S2
2 =

∑N
i=1

∑M
j=1(yij − Ȳi)2

N(M − 1)
= population variance among subunits within primary units

If the n units and the m subunits from each chosen unit are selected by simple random
sampling, then ¯̄y is an unbiased estimator of µ = ¯̄Y with variance

V(¯̄y) = σ2
¯̄y =

(
N − n
N

)
S2

1

n
+

(
M −m
M

)
S2

2

mn
. (5.1)

Moreover, an unbiased estimator of V(¯̄y) from the sample is

v(¯̄y) = ŝ2
¯̄y =

(
1− f1

n

)
s2

1 +

(
f1(1− f2)

mn

)
s2

2, (5.2)

where f1 = n/N , f2 = m/M , and

s2
1 =

∑n
i=1(ȳi − ¯̄y)2

n− 1
and s2

2 =

∑n
i=1

∑m
j=1(yij − ȳi)2

n(m− 1)
, (5.3)

see Cochran (1977, pp.277-278) for proofs of (5.1) and (5.2).
It is interesting to note if m = M , i.e., if f2 = 1, then formula (5.1) – and the correspond-

ing sampling scheme – reduces to that for cluster sampling (not discussed in this document).
On the other hand, if n = N the formula is that for proportional stratified random sampling
as discussed in Chapter 3, because the primary units may then be regarded as strata, all of
which are sampled.

Example 5-1. Suppose we have a population of 24 elements with N = 6 primary
units, each consisting of M = 4 secondary units, see Table 5.1. What is the variance of the
distribution of the mean when a random sample of n = 4 primary units is drawn in the first
stage from this population, and then a random sample of m = 1 secondary units from each
of these n = 4 primary units in the second stage? And what is this variance for n = 2 and
m = 2? And for n = 1 and m = 4?

Answer. The sums Yi =
∑M

j=1 (i = 1, . . . , N) and means Ȳi (j = 1, . . . , N) of the
M = 4 secondary units in each primary unit of the population are given in the sixth and
seventh column of Table 5.1, respectively. The overall mean of the population is ¯̄Y =
1
N

∑N
i=1 Ȳi = 1

6
(30) = 5, which can also be calculated as ¯̄Y = 1

NM

∑N
i=1 Yi = 1

(6)(4)
(120) = 5.
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Table 5.1: An artificial population of 24 elements with N = 6 primary units (in the rows),
each consisting of M = 4 secondary or subunits (in the columns).

1 2 3 4 Yi Ȳi
1 4 3 2 1 10 2.5
2 2 6 4 8 20 5.0
3 3 4 1 2 10 2.5
4 8 2 4 6 20 5.0
5 12 3 2 1 30 7.5
6 12 6 9 3 30 7.5

Total 120 30

Table 5.2: Variances for three different two-stage sampling designs from the population in
Table 5.1.

sampling design variance
(
N−n
N

) S2
1

n
variance

(
M−m
M

) S2
2

mn

n m in first stage in second stage total variance
4 1 0.417 1.458 1.875
2 2 1.667 0.972 2.639
1 4 4.167 0 4.167

The population variance among primary unit means in Table 5.1 is S2
1 = 5 and that among

subunits within primary units is S2
2 = 7.778. For a random sample of n = 4 primary units

from this population, followed by a random sample of m = 1 secondary units from each of
these n = 4 primary units, i.e., for the situation that n = 4 and m = 1, the two terms at

the right of (5.1) are
(
N−n
N

) S2
1

n
=
(

6−4
6

)
5
4

= 0.417 and
(
M−m
M

) S2
2

mn
=
(

4−1
4

)
7.778
(1)(4)

= 1.458.
The total variance of the mean is therefore 0.417 + 1.458 = 1.875, see the second row of
Table 5.2. Analogous calculations for n = 2 and m = 2, and for n = 1 and m = 4 yield
the variances shown in the second and third rows of Table 5.2, respectively. We see that the
variance decreases when m increases, but also that the variance in the first stage increases
faster as n gets smaller. For given sample size nm, the total variance is therefore smallest
(and the precision largest) when n is as large as possible.

In two-stage sampling it is almost always true that – for constant sample size nm – the
variance is smallest when n is as large as possible, and m therefore as small as possible.
However, when choosing for a certain two-stage sampling design it is equally important to
consider the amount of money involved in collecting the data. As noted earlier, a multi-stage
sampling design is often used because no sampling frame of the total population is available.
But an increase in the number of sampled primary units also increases the costs of the survey,
because a sampling frame of secondary units will have to be constructed or consulted for
each of the sampled primary units.

The previous formulas presented so far apply to two-stage sampling of quantitative vari-
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ables. For qualitative variables (i.e., percentages and proportions) the subunits are classified
into two classes and we estimate the proportion that falls in the first class. The previous
formulas can then be applied by defining yij = 1 if the corresponding subunit falls into the
first class and as yij = 0 otherwise. Let pi = ai/m be the proportion falling in the first class

in the subsample from the ith unit. Then p̄ =
∑
pi
n

and an unbiased estimator of V(p̄) from
the sample is

v(p̄) = ŝ2
p̄ =

1− f1

n(n− 1)

n∑
i=1

(pi − p̄)2 +
f1(1− f2)

n2(m− 1)

n∑
i=1

piqi. (5.4)

Example 5-2. In a study of plant disease plants were grown in 160 small plots containing
nine plants each. A random sample of 40 plots was taken and three random plants in each
sampled plot were checked for the presence of disease. It was found that 22 plots had no
diseased plants out of three, 11 had one, 4 had two, and 3 had three. Estimate the proportion
of diseased plants and its standard error.

Answer. We have N = 160, n = 40, M = 9, and m = 3. The proportions pi of diseased
plants per sampled plot are 0 in 22 plots, 1

3
in 11 plots, 2

3
in 4 plots, and 3

3
= 1 in 3 plots.

The mean proportion of these 40 plots is therefore p̄ = 1
n

∑
pi = 1

40
((22)(0) + (11)(1

3
) +

(4)(2
3
) + (3)(1))) = 1

40
28
3

= 7
30

= 0.233. Then
∑n

i=1(pi− p̄)2 = 3.822, while
∑n

i=1 piqi = 3.333,
so that (5.4) yields

v(p̄) = ŝ2
p̄ =

1− 40
160

40(40− 1)
(3.822) +

40
160

(1− 3
9
)

402(3− 1)
(3.333) = 0.00201,

meaning that the standard error of the proportion is
√

0.00201 = 0.045.

In two-stage sampling with units of equal size, an estimation of sample size is obtained
by considering a cost function of the type

C = c1n+ c2nm, (5.5)

where c1 denotes the cost of a primary unit, and c2 the cost involved in a secondary or subunit.
The first component of cost, c1n, is therefore proportional to the number of primary units
in the sample, and the second, c2nm, is proportional to the total number of second stage
elements in the sample. The optimal number of second stage elements in the sample is

mopt =
S2√

S2
1 − S2

2/M

√
c1/c2, (5.6)

provided that S2
1 > S2

2/M after which mopt is rounded to the nearest integer. Should
mopt > M or S2

1 ≤ S2
2/M then take m = M , i.e., use cluster sampling.

Proof. In order to find the optimal value for n and m we minimize the product of the
variance of the mean V(¯̄y) in (5.1) and the cost function C in (5.5) with respect to n and
m. It is not very difficult to verify that the variance (5.1) can also be written as

V(¯̄y) =
1

n

(
S2

1 −
S2

2

M

)
+

1

mn
S2

2 −
1

N
S2

1 , (5.7)
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and the last term on the right is a constant with respect to n and m. This means that the
minimization of the product V(¯̄y)C is equivalent to the minimization of[

1

n

(
S2

1 −
S2

2

M

)
+

1

mn
S2

2

]
[c1n+ c2nm] =

[(
S2

1 −
S2

2

M

)
+

1

m
S2

2

]
[c1 + c2m], (5.8)

since the terms n cancel each other out. Working out the product (5.8) shows that we have
to minimize

c1S
2
2

m
+mc2

(
S2

1 −
S2

2

M

)
+ c2S

2
2 + c1

(
S2

1 −
S2

2

M

)
(5.9)

with respect to m. The optimum is obtained by setting the first order derivative of (5.9)
equal to zero:

−c1S
2
2

m2
+ c2

(
S2

1 −
S2

2

M

)
= 0 (5.10)

and then solving (5.10) with respect to m. This yields (5.6), which completes the proof.
The value of nopt can next be found by solving either the cost equation (5.5) or the

variance equation (5.1) with respect to n, depending on which criterium has been defined
beforehand. If it is the total cost C in (5.5) that is fixed, for example, then (5.6) is substituted
in (5.5) and solved for n yielding

nopt =
C

c1 +moptc2

. (5.11)

If it is the variance V(¯̄y) that is fixed, on the other hand, then (5.6) is substituted in (5.1)
and solved for n yielding

nopt =
S2

1 +
(
M−mopt

M

)
S2

2

mopt

V(¯̄y) +
S2

1

N

. (5.12)

In practice, the estimation of m and n requires estimates of c1/c2 and of S2/S1.
From (5.6) the following rules can be derived. When c1 is much larger than c2, a large

m should be chosen and therefore a small n. We could even take m = M , which means that
cluster sampling is used if c1 (the preparation cost) is large and c2 (the observation cost) is
small. When c1 is small in comparison with c2, a small m should be chosen and a large n;
in this situation we could even go for n = N , a stratified random sample.

Similarly, a relatively large value of S2 compared with S1 results in a large m. In other
words, when the primary units are not very different, we only need to observe a few of them.
Should S1 be large in comparison with S2, on the other hand, then we should choose n
large and m small, because the secondary units within the primary units are then relatively
homogeneous, while the primary units are relatively heterogeneous.

5.2 Units of unequal size

5.2.1 Sampling with equal probabilities

A situation encountered very often in practice is that the primary units vary in size. Let Mi

denote the number of secondary units in primary unit i (i = 1, . . . , N) of the population.
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Then M0 =
∑N

i=1 Mi is the number of elements in the total population, and the mean size
M̄ of the primary units equals

M̄ =
M0

N
=

1

N

N∑
i=1

Mi. (5.13)

The total of primary unit i is

Yi =

Mi∑
j=1

yij, (5.14)

so that the grand total in the population equals

Y =
N∑
i=1

Yi =
N∑
i=1

Mi∑
j=1

yij. (5.15)

The average total in the N primary units of the population is

Ȳ =
1

N

N∑
i=1

Yi =
Y

N
, (5.16)

and the mean of primary unit i equals

Ȳi =
1

Mi

Mi∑
j=1

yij =
1

Mi

Yi. (5.17)

The grand mean of the population is therefore

¯̄Y =
Y

M0

=
Ȳ

M̄
. (5.18)

Example 5-3. Consider the population shown in Table 5.3. Calculate the totals for
each primary unit, the means for each primary unit, the average total of the primary units,
the grand total of the population, and the grand mean of this population.

Answer. The totals Yi and means Ȳi of the primary units in this population are obtained
from (5.14) and (5.17), respectively, and can be found in the fourth and fifth column of
Table 5.3. The average total of the four primary units is obtained from (5.16) yielding
Ȳ = 1

N

∑N
i=1 Yi = 1

4
(9 + 7 + 36 + 28) = 20 = 1

N
Y . The grand total of the population is

Y = 9 + 7 + 36 + 28 = 80, and the grand mean is ¯̄Y = Y
M0

= 80
16

= 5 = 20
4

= Ȳ
M̄

since

M̄ = M0

N
= 16

4
= 4.

Suppose we now draw n random primary units from the population without replace-
ment in the first stage, and mi secondary units from each of these n primary units without
replacement in the second stage. Then the sample mean in primary unit i is

ȳi =
1

mi

mi∑
j=1

yij. (5.19)
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Table 5.3: An artificial population of 16 elements with N = 4 primary units (in the rows),
consisting of 2, 4, 6, and 4 secondary or subunits (in the columns), respectively.

primary unit secondary units Mi Yi Ȳi = Yi/Mi S2
2i zi = Mi

M0

1 4 5 2 9 4.50 0.5000 2
16

= 0.125
2 1 1 3 2 4 7 1.75 0.9167 4

16
= 0.250

3 6 7 6 5 5 7 6 36 6.00 0.8000 6
16

= 0.375
4 8 6 8 6 4 28 7.00 1.3333 4

16
= 0.250

Total M0 = 16 Y = 80 1.000

This means that

ŷi = Miȳi. (5.20)

is an unbiased estimator of the total Yi of this primary unit and – since this primary unit has
been selected randomly – also of the average total of the primary units. Averaging over the
n primary units in the sample yields the following unbiased estimator of the average total
(5.16) of the primary units in the population:

ˆ̄y =
1

n

n∑
i=1

ŷi. (5.21)

An unbiased estimator of the grand mean of the population then equals

ˆ̄̄yu =
ˆ̄y

M̄
=

1

nM̄

n∑
i=1

ŷi, (5.22)

while an unbiased estimator of the grand total of the population is

ŷu = N ˆ̄y =
N

n

n∑
i=1

ŷi =
N

n

n∑
i=1

Miȳi. (5.23)

Note that

M0
ˆ̄̄yu = M0

1

nM̄

n∑
i=1

ŷi = M0
1

nM̄0

N

n∑
i=1

ŷi =
N

n

n∑
i=1

ŷi = ŷu, (5.24)

as it should be.
The variance of the unbiased estimate (5.23) of the total of the population is

V(ŷu) = σ2
ŷu =

N2

n
(1− f1)

∑N
i=1(Yi − Ȳ )2

(N − 1)
+
N

n

N∑
i=1

M2
i (1− f2i)S

2
2i

mi

, (5.25)

where f1 = n
N

, f2i = mi

Mi
, and

S2
2i =

1

Mi − 1

Mi∑
j=1

(yij − Ȳi)2, (5.26)
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is the variance among subunits in the ith unit. In the latter two formulas Yi, Ȳ , and Ȳi are
as defined in (5.14), (5.16), and (5.17), respectively.

An unbiased sample estimator of this variance is provided by

v(ŷu) = ŝ2
ŷu =

N2(1− f1)

n

∑n
i=1(ŷi − ˆ̄y)2

(n− 1)
+
N

n

n∑
i=1

M2
i (1− f2i)s

2
2i

mi

, (5.27)

where

s2
2i =

1

mi − 1

mi∑
j=1

(yij − ȳi)2, (5.28)

and ŷi, ˆ̄y, and ȳi are defined as in (5.20), (5.21), and (5.19), respectively, see Cochran (1977,
p.303).

The variance of the unbiased estimate (5.22) of the mean of the population is

V(ˆ̄̄yu) = σ2
ˆ̄̄yu

=
V(ŷu)

M2
0

, (5.29)

and an unbiased sample estimator of this variance is provided by

v(ˆ̄̄yu) = ŝ2
ˆ̄̄yu

=
v(ŷu)

M2
0

. (5.30)

Example 5-4. Again consider the population shown in Table 5.3. What is the variance
of the distribution of the mean when a random sample of n = 2 primary units is drawn in
the first stage from this population, and then a random sample of mi = 2 secondary units
(i = 1, . . . , 4) from the primary units in the second stage? And what is this variance for
n = 2 and a proportional allocation of mi = 1

2
Mi for i = 1, . . . , 4?

Answer. The variance of the sampling distribution of the total is obtained from (5.25).
The values of the S2

2i defined in (5.28) for this population are given in the second last column
of Table 5.3. For n = 2 and mi = 2 for i = 1, . . . , 4, (5.25) yields

V(ŷu) =
42

2
(1− 2

4
)
(9− 20)2 + (7− 20)2 + (36− 20)2 + (28− 20)2

(4− 1)

+
4

2

(
22(1− 2

2
)0.5

2
+

42(1− 2
4
)0.9167

2
+

62(1− 2
6
)0.8

2
+

42(1− 2
4
)1.3333

2

)
= 850.53,

from which it follows that the variance of the sampling distribution of the mean equals

V(ˆ̄̄yu) =
V(ŷu)

M2
0

=
850.33

162
= 3.3224,

according to (5.29).
Analogous calculations for n = 2 and mi = 1

2
Mi (resulting in m1 = 1, m2 = 2, m3 = 3,

and m4 = 2) give V(ŷu) = 842.93 and V(ˆ̄̄yu) = 3.2927, a slight increase in precision.
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5.2.2 Sampling with unequal probabilities

Let the primary units in two-stage sampling be selected with (unequal) probabilities zi
(i = 1, . . . , N) with replacement, where the zi are positive numbers adding up to 1. Let
the subsample of mi subunits from the ith unit be randomly drawn without replacement.
Note that zi is now allowed to be different for each primary unit. Here we present the
results of selecting the primary units with replacement because the formulas for the true
and estimated variances of the estimates are relatively simple in this case, while those for
sampling without replacement are much more complicated. For those interested in the
formulas without replacement, we refer to Cochran (1977, Section 11.10). An unbiased
estimator of the population total when sampling with replacement is

Ŷppz =
1

n

n∑
i=1

Miȳi
zi

=
1

n

n∑
i=1

Ŷi
zi
, (5.31)

from which it follows that

ˆ̄̄
Yppz =

Ŷppz
M0

, (5.32)

and its variance is

V(Ŷppz) = σ2
Ŷppz

=
1

n

N∑
i=1

zi(
Yi
zi
− Y )2 +

1

n

N∑
i=1

M2
i (1− f2i)S

2
2i

mizi
. (5.33)

from which it follows that

V(
ˆ̄̄
Yppz) = σ2

ˆ̄̄
Yppz

=
V(Ŷppz)

M2
0

. (5.34)

An unbiased sample estimator of the total V(Ŷppz) is

v(Ŷppz) = ŝ2
Ŷppz

=

∑n
i=1( Ŷi

zi
− Ŷppz)2

n(n− 1)
, (5.35)

and an unbiased sample estimator of the mean V(
ˆ̄̄
Yppz) is therefore

v(
ˆ̄̄
Yppz) = ŝ2

ˆ̄̄
Yppz

=
v(Ŷppz)

M2
0

. (5.36)

see Cochran (1977, pp.306-307). The subscript ppz in these formulas is shorthand for “prob-
abilities proportional to zi”.

When the probabilities zi are chosen such that zi = Mi

M0
for i = 1, . . . , n, this is called

two-stage sampling with probabilities proportional to size of the primary units. In this case
(5.31) and (5.32) can be written as

Ŷpps =
M0

n

n∑
i=1

ȳi, (5.37)
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and

ˆ̄̄
Ypps =

Ŷpps
M0

=
1

n

n∑
i=1

ȳi, (5.38)

respectively, while (5.35) and (5.36) can then be written as

v(Ŷpps) = ŝ2
Ŷpps

=
M2

0

∑n
i=1(ȳi − 1

M0
Ŷpps)

2

n(n− 1)
=
M2

0

∑n
i=1(ȳi − ˆ̄̄

Ypps)
2

n(n− 1)
, (5.39)

and

v(
ˆ̄̄
Ypps) =

v(Ŷpps)

M2
0

=

∑n
i=1(ȳi − ˆ̄̄

Ypps)
2

n(n− 1)
, (5.40)

respectively. The subscript pps in the latter formulas is shorthand for “probabilities propor-
tional to size”. Note that this type of sampling requires that the size Mi of each primary
unit in the population is known.

Example 5-5. Again consider the population shown in Table 5.3. What is the variance
of the distribution of the mean when a random sample of n = 2 primary units is drawn in
the first stage from this population, and then a random sample of mi = 2 secondary units
(i = 1, . . . , 4) from the primary units in the second stage, and the primary units are selected
with (unequal) probabilities proportional to size? And what is this variance for n = 2 and
a proportional allocation of mi = 1

2
Mi for i = 1, . . . , 4?

Answer. For probabilities proportional to size (i.e., with probabilities z1 = 2
16

= 0.125,
z2 = 4

16
= 0.25, z3 = 6

16
= 0.375, and z4 = 4

16
= 0.25, see the last column in Table 5.3), the

variance of the total for n = 2 and mi = 2 for all i is found with (5.33):

V(Ŷppz) =
1

2

(
0.125(

9

0.125
− 80)2 + 0.25(

7

0.25
− 80)2 + 0.375(

36

0.375
− 80)2 + 0.25(

28

0.25
− 80)2

)
+

1

2

(
(22)(1− 2

2
)(0.5)

(2)(0.125)
+

(42)(1− 2
4
)(0.9167)

(2)(0.25)
+

(62)(1− 2
6
)(0.8)

(2)(0.375)
+

(42)(1− 2
4
)(1.333)

(2)(0.25)

)
= 548.8.

The variance of the mean therefore equals

V(
ˆ̄̄
Yppz) =

V(Ŷppz)

M2
0

=
548.8

162
= 2.1438.

Analogously, when a proportional allocation of mi = 1
2
Mi is used we obtain

V(Ŷppz) = 546.4,

and

V(
ˆ̄̄
Yppz) =

V(Ŷppz)

M2
0

=
546.4

162
= 2.1344,

which is only a very slight improvement upon the previous result. Note, however, that the
sampling with probabilities proportional to size shown in this example gives much more
precise results than the sampling with equal probabilities discussed in Example 4-4.
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5.2.3 Sample size estimation with equal probabilities

For equal probabilities, the formula of the variance of the sampling distribution of the total
is

V(ŷu) =
N2

n
(1− f1)

∑N
i=1(Yi − Ȳ )2

(N − 1)
+
N

n

N∑
i=1

M2
i (1− f2i)S

2
2i

mi

,

with f2i = mi

Mi
, see (5.25). When using a self-weighting design with f2i = mi

Mi
= f2 = m̄

M̄
= Nm̄

M0

for i = 1, . . . , N , it follows that mi = Nm̄Mi

M0
. Substitution of the latter in the second term of

the variance formula yields

N

n

N∑
i=1

M2
i (1− f2)S2

2i

mi

=
N

n

N∑
i=1

M0M
2
i (1− f2)S2

2i

Nm̄Mi

=
N∑
i=1

M0Mi(1− f2)S2
2i

nm̄

=
N∑
i=1

M2
0Mi(1− f2)S2

2i

nm̄M0

=
M2

0 (1− f2)

nm̄

N∑
i=1

Mi

M0

S2
2i,

meaning that (5.25) can then be written as

V(ŷu) =
N2

n
(1− f1)

∑N
i=1(Yi − Ȳ )2

(N − 1)
+
M2

0 (1− f2)

nm̄

N∑
i=1

Mi

M0

S2
2i. (5.41)

Dividing (5.41) by M2
0 = (M̄N)2 yields the variance of the mean:

V(ˆ̄̄yu) =
V(ŷu)

M2
0

=
N2

nM̄2N2
(1− f1)

∑N
i=1(Yi − Ȳ )2

(N − 1)
+

(1− f2)

nm̄

N∑
i=1

Mi

M0

S2
2i

=
(1− f1)

n

∑N
i=1(Yi − Ȳ )2

M̄2(N − 1)
+

(1− f2)

nm̄

N∑
i=1

Mi

M0

S2
2i. (5.42)

Let S2
b =

∑N
i=1(Yi−Ȳ )2

M̄2(N−1)
and S2

2 =
∑N

i=1
Mi

M0
S2

2i, and substitute f2 = m̄
M̄

in (5.42), and we obtain

V(ˆ̄̄yu) =
(1− n

N
)

n
S2
b +

(1− m̄
M̄

)

nm̄
S2

2

=
1

n
S2
b −

1

N
S2
b +

1

nm̄
S2

2 −
1

nM̄
S2

2

=
1

n
(S2

b −
1

M̄
S2

2) +
1

nm̄
S2

2 −
1

N
S2
b . (5.43)

Let the cost function be defined as

cost = cun+ c2

n∑
i=1

mi + cl

n∑
i=1

Mi, (5.44)

where

• cu is the fixed cost per primary unit
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• c2 is the cost per subunit

• cl the cost of listing per subunit in a selected unit

Formula (5.44) is not usable as such because the total cost depends on the particular set of
units that is selected. Instead, we consider the average cost over n units, which equals

E(C) = cun+ c2nm̄+ clnM̄ = (cu + clM̄)n+ c2nm̄ = c1n+ c2nm̄, (5.45)

with m̄ = f2M̄ .
Because 1

N
S2
b is a constant with respect to n and m, the minimization of the product

V(ˆ̄̄yu)E(C) over n and m is equivalent with the minimization of[
1

n
(S2

b −
1

M̄
S2

2) +
1

nm̄
S2

2

]
[c1n+ c2nm̄] =

[
(S2

b −
1

M̄
S2

2) +
1

m̄
S2

2

]
[c1 + c2m̄] (5.46)

over m̄. Working out the product (5.46) yields

c2m̄(S2
b −

1

M̄
S2

2) +
c1S

2
2

m̄
+ c2S

2
2 + c1(S2

b −
1

M̄
S2

2). (5.47)

Setting the first derivative of (5.47) with respect to m̄ equal to zero:

c2(S2
b −

1

M̄
S2

2)− c1S
2
2

m̄2
= 0,

and solving for m̄ yields

m̄opt =
S2√

S2
b − 1

M̄
S2

2

√
c1

c2

. (5.48)

Once m̄opt has been obtained from (5.48), for fixed cost the value of nopt can be found by
substituting m̄opt in (5.45), while for fixed variance it can be found by substituting m̄opt in
(5.43).

5.2.4 Sample size estimation with unequal probabilities

Here, we only consider the situation where the unequal probabilities are chosen to be pro-
portional to size, i.e. where zi = Mi

M0
, and where the mi are all equal (meaning that mi = m

for all i). In that situation it can be proven that the variance of the mean (5.34) can be
written as

V(
ˆ̄̄
Ypps) =

1

n

N∑
i=1

Mi

M0

(Ȳi − ˆ̄̄
Ypps)

2 +
1

n

N∑
i=1

Mi

M0

1− m
Mi

m
S2

2i. (5.49)

Letting S2
b =

∑N
i=1

Mi

M0
(Ȳi − ˆ̄̄

Ypps)
2, S2

2 =
∑N

i=1
Mi

M0
S2

2i, and S2
3 = 1

M0

∑N
i=1 S

2
2i, (5.49) can be

simplified to

V(
ˆ̄̄
Ypps) =

1

n
(S2

b +
1

m
S2

2 − S2
3). (5.50)
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Since, for appropriate definitions of c1 and c2, the average cost of sampling n units is

E(C) = c1n+ c2nm, (5.51)

the optimal sample size is found by minimizing the product of (5.50) and (5.51):

V(
ˆ̄̄
Ypps)E(C) =(S2

b +
1

m
S2

2 − S2
3)(c1 + c2m)

=c1(S2
b − S2

3) +
1

m
c1S

2
2 + c2m(S2

b − S2
3) + c2S

2
2 . (5.52)

The global optimum is obtained by setting the first derivative of (5.52) with respect to m
equal to zero:

− 1

m2
c1S

2
2 + c2(S2

b − S2
3) = 0, (5.53)

and then solving for m, yielding

mopt =

√
S2

2

S2
b − S2

3

√
c1

c2

. (5.54)

Just as in the previous section, once mopt has been determined with (5.54), for fixed cost
the value of nopt can be found by substituting mopt in (5.51), while for fixed variance it can
be obtained by substituting mopt in (5.49).



Chapter 6

Alternative methods of estimation

In the previous chapters we have presented several sampling methods, and discussed the
effect these methods have on the precision of the sample estimates of population parameters.
Another important way to improve the precision of population estimates is to use other
methods of estimation than just the sample mean, total or percentage. This is the topic
of the present chapter. We discuss two alternative estimators: the ratio estimator and the
regression estimator. As will become clear below, both estimators require information on
auxiliary variables that are (highly) correlated with the variable of interest. Moreover, these
alternative estimators can only be applied in the situation that both the variable of interest
and the auxiliary variables are quantitative variables.

6.1 The ratio estimator

When we have a simple random sample of n observations yi, the (unbiased) direct estimator
of the population mean is given by

ˆ̄Yd =
1

n

n∑
i=1

yi = ȳ, (6.1)

see Chapter 2, where we use the subscript d in the present chapter to indicate that it is a
direct estimator. Now suppose that we also know the sample and population mean of an
auxiliary variable x, then we can use their ratio X̄

x̄
to change the direct estimator into the

ratio estimator :

ˆ̄YR = ȳ
X̄

x̄
, (6.2)

where the subscript R denotes the ratio estimator, which can also be written as

ˆ̄YR =
ȳ

x̄
X̄ =

∑n
i=1 yi∑n
i=1 xi

X̄. (6.3)

The total of the population is then estimated with

ŶR = N ˆ̄YR =
ȳ

x̄
X. (6.4)

75
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When y and x are positively correlated, the ratio estimator (6.3) is often more precise
than the direct estimator (6.1). Intuitively this can be explained as follows. When y and
x are positively correlated and ȳ happens to be large, then x̄ will also tend to be large.
Multiplication of ȳ with X̄

x̄
will therefore tend to result in a smaller value for ȳ. Conversely,

when ȳ happens to be small, then x̄ will also tend to be smaller than X̄, meaning that ˆ̄Yr will

probably be larger than ȳ = ˆ̄Yd. The result is that the fluctuation of ˆ̄Yr, the ratio estimator

of the population mean Ȳ , and therefore its variance, will be smaller than that of ˆ̄Yd, the
direct estimator of the population mean Ȳ .

In practice y and x are often the same variable measured at different time points or time
periods. Auxiliary variable x is often also some sort of measure of the size of the units in the
population. The part of (6.3) and (6.4) that is subject to random fluctuation is the ratio

R̂ =
ȳ

x̄
, (6.5)

which can be conceived of as the estimator of the population ratio

R =
Y

X
=
Ȳ

X̄
. (6.6)

Defining

R̂ =
ȳ

x̄
=

∑n
i=1 yi∑n
i=1 xi

, (6.7)

the ratio estimators of the mean and the total of the population can be written as

ˆ̄YR = R̂X̄ (6.8)

and

ŶR = R̂X, (6.9)

respectively.

6.1.1 Properties of the ratio estimator and its variance

The values of X̄ and X are fixed, and the statistical properties of (6.8) and (6.9) are therefore
completely determined by the statistical properties of R̂. The estimator R̂ is an unbiased
estimator of R if

E(R̂) = R. (6.10)

This is generally not the case, and R̂ is therefore biased. However, for large enough samples
x̄ will be very similar to X̄, in which case

E(R̂) = E(
ȳ

x̄
)
.
= E(

ȳ

X̄
) =

E(ȳ)

X̄
=
Ȳ

X̄
= R, (6.11)

implying that the bias will be negligible in large samples.
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Table 6.1: An artificial population of 3 units with values for two variables y and x.

i 1 2 3
yi 12 8 16
xi 4 6 8

Example 6-1. Determine all simple random samples without replacement of size two
for the artificial population shown in Table 6.1. Calculate E(R̂) from all these samples and
compare with the actual population ratio R.

Answer. The total distinct number of simple random samples without replacement of
size n = 2 from a population of N = 3 is M = N !

n!(N−n)!
= 3!

2!1!
= 3. These three samples are

shown in Table 6.2, including their means for y and for auxiliary variable x. The average

ratio of the latter two means is E(R̂) =

∑M
j=1

ȳj
x̄j

M
= 6.047

3
= 2.016. The actual ratio equals

R = Ȳ
X̄

= 12
6

= 2, showing that R̂ is indeed biased.

Table 6.2: Calculation of expected and actual ratio based on all simple random samples of
size two from artificial population in Table 6.1.

Units in the sample ȳ x̄ R̂ = ȳ
x̄

1 2 10 5 2
1 3 14 6 2.333
2 3 12 7 1.714

Total 36 18 6.047
Expectation 12 6 2.016

If variables yi and xi are measured on each unit of a simple random sample of size n,
assumed large (so that x̄

.
= X̄), the mean squared error (MSE) and variance of R̂ = ȳ

x̄
are

each approximately

MSE(R̂)
.
= V(R̂) = σ2

R̂

.
=

1− n
N

nX̄2

[∑N
i=1(yi −Rxi)2

N − 1

]
, (6.12)

where R = Ȳ
X̄

is the ratio of the population means, see Cochran (1977, pp.31-32) for a proof.
Similarly, assuming n large, the approximate variance of the ratio estimator of the pop-

ulation total is

V(ŶR) = σ2
ŶR

.
=
N(N − n)

n

[∑N
i=1(yi −Rxi)2

N − 1

]
, (6.13)
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while the approximate variance of the ratio estimator of the population mean is

V( ˆ̄YR) = σ2
ˆ̄YR

.
=

1− n
N

n

[∑N
i=1(yi −Rxi)2

N − 1

]
. (6.14)

A sample estimate of the term

S2
R =

∑N
i=1(yi −Rxi)2

N − 1
(6.15)

in (6.12), (6.13), and (6.14) is

s2
R =

∑n
i=1(yi − R̂xi)2

n− 1
(6.16)

which has a bias of order 1
n
. This gives the following estimated variance of R̂:

v(R̂) = estimated σ2
R̂

=
1− n

N

nX̄2

[∑n
i=1(yi − R̂xi)2

n− 1

]
, (6.17)

where the sample estimate x̄ is substituted in the denominator if X̄ is not known. Similarly,
the estimated variance of ŶR is

v(ŶR) = estimated σ2
ŶR

=
N(N − n)

n

[∑n
i=1(yi − R̂xi)2

n− 1

]
, (6.18)

while the estimated variance of ˆ̄YR equals

v( ˆ̄YR) = estimated σ2
ˆ̄YR

=
1− n

N

n

[∑n
i=1(yi − R̂xi)2

n− 1

]
. (6.19)

Example 6-2. Determine V(R̂) from Table 6.2. Compare this result with approximation
(6.12) to calculate the variance of R̂.

Answer. From Table 6.2 we obtain V(R̂) = E(R̂ − E(R̂))2 = 1
3
[(2− 2.016)2 + (2.333−

2.016)2 + (1.714 − 2.016)2] = 0.0640. Formula (6.12), on the other hand, yields V(R̂) =
(1− 2

3
)

(2)(62)
32

(3−1)
= 0.0741, showing that (6.12) indeed only gives an approximation.

Example 6-3. For a shipment of apples we need to estimate the total weight of apple
juice that can be extracted from these apples. We draw a random sample of 15 apples from
the shipment, and determine both the weight of each apple in the sample, and the weight of
the juice extracted (in pounds), see Table 6.3. We do not know the total number of apples in
the shipment, but we do know that the total weight of the shipment is 2000 pounds. Based
on this information, what is the total amount of apple juice we may expect to obtain from
this shipment? And what is the estimated variance of this estimate?
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Table 6.3: Apple juice weight and apple weight in a random sample of 15 apples

Apple juice weight (yi) Apple weight (xi) (yi − R̂xi)2

0.16 0.22 0.0002209
0.15 0.26 0.0004634
0.20 0.31 0.0000204
0.25 0.37 0.0000348
0.16 0.28 0.0006112
0.27 0.38 0.0003727
0.28 0.40 0.0002596
0.16 0.21 0.0004605
0.11 0.18 0.0000766
0.16 0.29 0.0009809
0.17 0.26 0.0000023
0.24 0.32 0.0008346
0.21 0.33 0.0000594
0.11 0.16 0.0000198
0.22 0.35 0.0001189

Total 2.85 4.32 0.0045360
Mean 0.19 0.288

Answer. In Figure 6.1 we have plotted the juice weight yi obtained from each apple
in the random sample against its weight xi, together with the best fitting regression line.
Visual inspection of this figure already suggests that the two variables are indeed strongly
correlated; in fact, their correlation is 0.943.

The regression equation of the best fitting line for these two variables is ŷ = −0.009 +
0.691x, see Figure 6.2. The t-test for the regression coefficient B of the independent variable
x shows that the linear relation between apple juice and apple weight is very significant (p <
0.001). Moreover, the t-test for (Constant) in Figure 6.2 indicates that the intercept does
not significantly deviate from zero, meaning that the use of a ratio estimator is warranted in
this case. If the intercept happens to significantly deviate from zero, the regression estimator
should be used, as will be explained in Section 6.2.

We first of all note that it is not possible to apply the direct estimator Ŷd = Nȳ, see
(2.6) in Section 2.2, to estimate the total weight of the apple juice because we do not know
N , the total number of apples in the shipment. However, using (6.7) we find from Table 6.3
that

R̂ =
ȳ

x̄
=

∑15
i=1 yi∑15
i=1 xi

=
0.19

0.288
=

2.85

4.32
= 0.6597,

and, according to (6.9) the estimated total weight of apple juice in the shipment is

Ŷr = R̂X = (0.6597)(2000) = 1319.44 pounds.
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Figure 6.1: Scatter plot of juice weight y against apple weight x, including regression line
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Figure 6.2: Results of linear regression of juice weight y on apple weight x
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It further follows from (6.18) that the estimated variance of this total equals

v(ŶR) =
N(N − 15)

15

[
0.0045360

14

]
. (6.20)

But N , the total number of apples in the shipment, is unknown. Still, we can obtain
an estimate of N using the following reasoning. The average weight of all the apples in
the shipment is X̄ = 1

N
X, meaning that N = X

X̄
. We know that X = 2000. We do

not know X̄, the average weight in the population, but we may consider x̄ = 0.288, the
average weight in the sample from Table 6.3, to be a reasonable approximation of X̄. So
N = X

X̄

.
= X

x̄
= 2000

0.288
= 6944.44. Substituting this estimate for the total number of apples in

(6.20) yields

v(ŶR) =
6944.44(6944.44− 15)

15

[
0.0045360

14

]
= (3208072.02)(0.000324) = 1039.42.

The point of this example is, of course, that the weight of the total shipment is easily
determined while determination of the juice weight is much more time consuming.

Example 6-4. In this example taken from Cochran (1977, p.152) we have the number of
inhabitants of a random sample of 49 cities in the United States drawn from a population of
169 large US cities, both for the year 1920 (x) and for the year 1930 (y), see Table 6.4. The
true total X of the number of inhabitants in the population in 1920 is known to be 22, 919.
Based on this information, estimate the total number of inhabitants in the population of
196 cities in 1930. Also calculate the variance of this ratio estimate, and compare the latter
variance with that of the direct estimator for Y .

Answer. In Figure 6.3 we have plotted the number of inhabitants in 1930 from each
city in the sample against the number of inhabitants in 1920, together with the best fitting
regression line. Visual inspection of this scatter plot suggests that the two variables are
indeed correlated; in fact, their correlation is 0.982.

The regression equation of the best fitting line for these two variables is Ŷ = 8.384 +
1.158X, see Figure 6.4. The t-test for the regression coefficient B is very significant (p <
0.001), meaning that there is indeed a strong linear relationship between the two variables.
Also, the t-test for the (Constant) in Figure 6.4 indicates that the intercept is not signifi-
cantly different from zero, at least not at the conventional 5% level. This means that a ratio
estimate of the total is warranted in this case.

For the data in Table 6.4, we have that
∑
xi = 5054 and

∑
yi = 6262 from which it

follows that R̂ = 6262
5054

= 1.2390 and ŶR = R̂X = (1.2390)(22, 919) = 28, 397. If we choose to

neglect the information available from 1920 we find that Ŷd = Nȳ = (196)(6262
49

) = 25, 048
in 1930. The actual total for 1930 is 29,351. In terms of precision we find that s2

R =∑
(yi−R̂xi)2

n−1
= 29782.88

48
= 620.48, meaning that estimated variance of this total is

v(ŶR) =
196(196− 49)

49
(620.48) = 364, 842.24,

see (6.18). Neglecting the information available from 1920, on the other hand, we would find
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Figure 6.3: Scatter plot of number of inhabitants in 1930 against number of inhabitants in
1920, including regression line
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a. Dependent Variable: inhabitants 1930

Page 1

Figure 6.4: Results of linear regression of number of inhabitants in 1930 on number of
inhabitants in 1920
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Table 6.4: Number of inhabitants (in 1000’s) in 1920 (xi) and 1930 (yi) in a random sample
of 49 US cities

xi yi xi yi xi yi
76 80 2 50 243 291

138 143 507 634 87 105
67 67 179 260 30 111
29 50 121 113 71 79

381 464 50 64 256 288
23 48 44 58 43 61
37 63 77 89 25 57

120 115 64 63 94 85
61 69 64 77 43 50

387 459 56 142 298 317
93 104 40 60 36 46

172 183 40 64 161 232
78 106 38 52 74 93
66 86 136 139 45 53
60 57 116 130 36 54
46 65 46 53 50 58

48 75

that

v(Ŷd) =
N2ŝy

2

n

(
N − n
N

)
=

(1962)(15, 158.832)

49

(
196− 49

196

)
= 8, 913, 393.22,

see (2.29). As far as this example is concerned, the ratio estimator therefore yields an
estimate of the total number of inhabitants in the population of 196 US cities in 1930 that
is more than 24 times more precise than the direct estimator.

6.1.2 The ratio estimator in stratified random sampling

In this section we discuss two ways in which a ratio estimate of the population total Y can
be made in stratified random sampling, see Cochran (1977, p.164 cf). The first is to make
a separate ratio estimate of the total of each stratum and then add the totals. The second
way is to use a combined ratio estimate.

For the separate ratio estimator of the total we have the formulas

ŶRs =
L∑
h=1

R̂hXh =
L∑
h=1

ȳh
x̄h
Xh, (6.21)

the subscript Rs standing for the separate ratio estimator, while its variance is estimated
from the sample with

v(ŶRs) = estimated σ2
ŶRs

=
L∑
h=1

N2
h(1− nh

Nh
)

nh
(s2
yh − 2R̂hsyxh + R̂2

hs
2
xh). (6.22)
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In these formulas, ȳh and x̄h are the sample means in stratum h, R̂h = ȳh
x̄h

, and Xh is the total
of the auxiliary variable X in stratum h. Moreover, syh and sxh are the sample standard
deviations in stratum h and

syxh =

∑
i = 1nh(yhi − ȳh)(xhi − x̄h)

nh − 1
, (6.23)

i.e., the sample covariance between y and x in stratum h.
In order to calculate the separate ratio estimator we need to know the totals Xh in

stratum h. If these stratum totals are unknown, but the population total X is known, then
the combined ratio estimator is used:

ŶRc = R̂X =

∑L
h=1Nhȳh∑L
h=1 Nhx̄h

X, (6.24)

the subscript Rc standing for the combined ratio estimator, where R̂ = Ŷ

X̂
, and Ŷ and X̂

have been estimated from the stratified sample using the direct estimator. Its estimated
variance is

v(ŶRc) = estimated σ2
ŶRc

=
L∑
h=1

N2
h(1− nh

Nh
)

nh
(s2
yh − 2R̂syxh + R̂2s2

xh). (6.25)

If the sample sizes per stratum are small, it is better to use the combined ratio estimator
than the separate ratio estimator, because the bias can become quite large for the latter
estimator in this case. On the other hand, the separate ratio estimator is usually more
precise, especially when there are large differences between the stratum ratios Rh.

6.1.3 Estimation of sample size for the ratio estimator

To find the sample size needed to estimate µ = Ȳ when the ratio estimator is used, let
d = |µ− ȳ| be the margin of error we are willing to tolerate, let t be the value of the normal
deviate corresponding to the desired confidence probability. Then the minimum sample size
required follows from

d = tσ ˆ̄YR
= t

√(
N − n
N

)
S2
R

n
(6.26)

with S2
R defined in (6.15). Solving (6.26) with respect to n we obtain

n =
t2S2

R

d2 +
t2S2

R

N

, (6.27)

which reduces to

n0 =
t2S2

R

d2
(6.28)

when N is very large.
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For the estimation of sample size based on the absolute error d = |Nµ−Nȳ| of the total
Nµ = Y in the population we have that

d = tσŶR , (6.29)

or, upon substitution of (6.13) in (6.29),

d = t

√
N(N − n)S2

R

n
(6.30)

with S2
R defined in (6.15). Solving (6.30) for n, we find that

n =
t2S2

R

t2S2
R

N
+ d2

N2

, (6.31)

or – if n
N
< 0.1 –

n0 =
t2N2S2

R

d2
. (6.32)

Example 6-5. For the data in Example 6-4, what is – using a ratio estimator – the
minimum sample size required in order to estimate the total number of inhabitants in the
population of US cities with an absolute error margin of 1000, apart from a chance of 1 in
20? And what sample size would be needed using the direct estimator of this total?

Answer. Since d = 1000, t = 1.96, and N = 196 in this example, and letting s2
R = 620.48

be used as an estimate of S2
R, it follows from (6.32) that

n0 =
t2N2S2

R

d2
=

(1.962)(1962)(620.48)

10002
= 91.57,

But since n0

N
= 92

196
= 0.47 > 0.1 we had better use (6.31) in order to correct for the finite

population. This gives

n =
t2S2

R

t2S2
R

N
+ d2

N2

=
(1.962)(620.48)

(1.962)(620.48)
196

+ 10002

1962

=
2383.64

12.16 + 26.03
= 62.42.

The ratio estimator therefore only requires a sample size of 63 US cities. If we use the direct
estimator, on the other hand, and acknowledge that s2

y = 15, 158.83 (the variance of the
sampled 49 US cities in 1930 in Table 6.4) may be used as an estimator of S2

y , the actual
variance in the population of 169 US cities in 1930, we find that

n =
t2S2

y

t2S2
y

N
+ d2

N2

=
(1.962)(15, 158.83)

(1.962)(15,158.83)
196

+ 10002

1962

= 180.21,

according to (2.61) in Section 2.8. In this example, the direct estimator therefore requires a
sample that covers almost 92% of the population, while the ratio estimator requires a sample
of only 32% of the population, an almost threefold improvement.
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6.2 The regression estimator

Like the ratio estimator, the linear regression estimator is used to increase precision by way
of an auxiliary variable xi that is correlated with yi. Inspection of the relation between xi
and yi may reveal that the two variables are approximately linearly related but that the
regression line does not go through the origin. This suggests an estimator based on the
linear regression of yi on xi rather than on the ratio of the two variables.

6.2.1 Properties of the regression estimator and its variance

Letting yi and xi be known for every unit in the sample, and let the population mean µx = X̄
of the xi also be known. Then the linear regression estimator of Ȳ , the population mean of
the yi, is

ȳL = ȳ + b(X̄ − x̄), (6.33)

where the subscript L denotes linear regression and b is an estimate of the change in y when
x is increased by one unit. For an estimate of the population total Y , we take

ŶL = NȳL. (6.34)

Just like the ratio estimator, the regression estimator is also biased.
It is interesting to note some special cases of (6.33). If we let b = 0, (6.33) reduces to

ȳL = ȳ, and we have the direct estimator of a simple random sample. If we choose b = ȳ
x̄
,

we obtain from (6.33):

ȳL = ȳ +
ȳ

x̄
(X̄ − x̄) =

ȳ

x̄
X̄ = ˆ̄YR,

the ratio estimator. If we finally set b = 1, and sample the whole population we find that

ȳL = ȳ + (X̄ − X̄) = ȳ = Ȳ .

If b in (6.33) is the least squares estimate of β, the regression coefficient in the population,
that is if

b =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
, (6.35)

then in simple random samples of size n, with n large, the approximate variance of regression
estimator (6.33) of the population mean is

V( ˆ̄YL) = σ2
ˆ̄YL

.
=

1− n
N

n
S2
y(1− ρ2), (6.36)

where ρ = Syx

SySx
, the population correlation between y and x, Sy and Sx are the standard

deviation of y and x in the population, respectively, and Syx is their population covariance.
See Cochran (1977, p.194) for a proof. A sample estimate of this approximate variance,
assuming large samples, is obtained with

v( ˆ̄YL) = estimated σ2
ˆ̄YL

.
=

1− n
N

n(n− 2)

(∑
(yi − ȳ)2 − [

∑
(yi − ȳ)(xi − x̄)]2∑

(xi − x̄)2

)
, (6.37)
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where we note that

SSresidual =

(∑
(yi − ȳ)2 − [

∑
(yi − ȳ)(xi − x̄)]2∑

(xi − x̄)2

)
, (6.38)

i.e., it is the residual sum of squares for the linear regression of y on x in the sample. The
approximate variance of regression estimator (6.34) of the population total is

V(ŶL) = σ2
ŶL

.
= N(N − n)

S2
y

n
(1− ρ2), (6.39)

while a sample estimate of this approximate variance, assuming large samples, is obtained
with

v(ŶL) = estimated σ2
ŶL

.
=
N(N − n)

n(n− 2)

(∑
(yi − ȳ)2 − [

∑
(yi − ȳ)(xi − x̄)]2∑

(xi − x̄)2

)
. (6.40)

Example 6-6. A mathematics achievement test was given to 486 students before entering
a certain university who then took a calculus course. At the end of the course a simple
random sample of 10 students is taken and their score on a calculus test is obtained. It is
known that the average score on the achievement test was 52 for all 486 students. The scores
of the ten students on the achievement and calculus tests are given in Table 6.5. Based on
these scores, what is the estimated average score on the calculus test in the total population
of 486 students? And what is the estimated variance of this estimate? What are the answers
to these two questions for the ratio estimator? And for the direct estimator?

Table 6.5: Calculus scores and achievement test scores in a random sample of 10 students

Student Calculus score (yi) Achievement test score (xi)
1 65 39
2 78 43
3 52 21
4 82 64
5 92 57
6 89 47
7 73 28
8 98 75
9 56 34

10 75 52
Total 760 460
Mean 76 46

Answer. In Figure 6.5 we have plotted the calculus test scores in the sample against the
achievement test scores, together with the best fitting regression line. Visual inspection of
this scatter plot suggests that the two variables are indeed correlated; in fact, their correlation
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Figure 6.5: Scatter plot of calculus score against achievement test score, including regression
line

Coefficientsa

Model

Unstandardized Coefficients

t Sig.B Std. Error Beta

1 (Constant)

achievement test score

40.784 8.507 4.794 .001

.766 .175 .840 4.375 .002

a. 

Page 1

Figure 6.6: Results of linear regression of calculus score on achievement test score: parameter
estimates

is 0.982. It is also clear from this figure, however, that the regression line does not go through
the origin, meaning that the regression estimator should be used.

The regression equation of the best fitting line on the scores of the 10 students on these
two variables is Ŷ = 40.784 + 0.765562X, see Figure 6.6. The t-test for the regression
coefficient B is very significant (p < 0.01), meaning that there is indeed a strong linear
relationship between the two variables. The t-test for the (Constant) in Figure 6.6 indicates
that the intercept also very significantly deviates from zero (p < 0.01), confirming that the
regression estimator of the average should be used in this case.

Since the sample means are ȳ = 76 and x̄ = 46, see Table 6.5, the regression estimate
follows from (6.33) yielding

ȳL = ȳ + b(X̄ − x̄) = 76 + (0.765562)(52− 46) = 80.5934.
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ANOVAa

Model df Mean Square F Sig.

1 Regression

Residual

Total

1449.974 1 1449.974 19.141 .002b

606.026 8 75.753

2056.000 9

a. 

b. 

Page 1

Figure 6.7: Results of linear regression of calculus score on achievement test score: ANOVA
table

The sample estimate of the variance follows from (6.37):

v( ˆ̄YL)
.
=

1− 10
486

10(10− 2)

(∑
(yi − ȳ)2 − [

∑
(yi − ȳ)(xi − x̄)]2∑

(xi − x̄)2

)
= (0.01224279835)

(
2056− 18942

2474

)
= (0.01224279835)(606.025869) = 7.42.

Using the ratio estimator (6.2) we obtain

ˆ̄YR = ȳ
X̄

x̄
= (76)(

52

46
) = 85.91,

while the estimated variance of ˆ̄YR equals

v( ˆ̄YR) =
1− n

N

n

[∑n
i=1(yi − R̂xi)2

n− 1

]
=

(
1− 10

486

10

)
(283.421)

= (0.09794238683)(283.421) = 27.76,

according to (6.19).
The (unbiased) direct estimator of the population mean is given by

ˆ̄Y =
1

n

n∑
i=1

yi = ȳ = 76,

see Chapter 2; according to (2.28) its variance is

v(ŷ) =
1− n

N

n
ŝ2 =

(
1− 10

486

10

)
(228.44) = (0.09794238683)(228.44) = 22.37.

So we not only see that the regression estimator is the most precise, but also that the ratio
estimator is even less precise than the direct estimator in this case.

6.2.2 The regression estimator in stratified random sampling

As with the ratio estimator, Cochran (1977, p.200 cf) also discusses two ways in which a
regression estimate of the population total Y can be made in stratified random sampling.
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The first way is again to make a separate regression estimate of the total of each stratum
and then add the totals. The second way is to use a combined regression estimate.

For the separate regression estimator of the total we have the formulas

ŶLs =
L∑
h=1

Nh[ȳh + bh(X̄h − x̄h)], (6.41)

the subscript Ls standing for the separate linear regression estimator, while its variance is
estimated from the sample with

v(ŶLs) = estimated σ2
ŶLs

=
L∑
h=1

N2
h(1− nh

Nh
)

nh
(s2
yh − 2bhsyxh + b2

hs
2
xh). (6.42)

In these formulas, ȳh and x̄h are the sample means in stratum h, and X̄h is the population
mean of the auxiliary variable X in stratum h. Moreover, syh and sxh are the sample standard
deviations in stratum h, syxh is the sample covariance between y and x in stratum h (see
(6.23) for the formula), and

bh =
syxh
s2
xh

, (6.43)

i.e., the sample regression coefficient in the linear regression of y on x in stratum h.
This estimator is to be recommended when the regression coefficients βh in the population

are very different, and the sample sizes nh are not too small. When the nh are small there is
the danger of bias, and it is better to use the combined linear regression estimator. In this
case, the same regression coefficient bc is used in each stratum:

ŶLs =
L∑
h=1

Nh[ȳh + bc(X̄h − x̄h)], (6.44)

with variance

v(ŶLc) = estimated σ2
ŶLc

=
L∑
h=1

N2
h(1− nh

Nh
)

nh
(s2
yh − 2bcsyxh + b2

cs
2
xh). (6.45)

The optimal value of bc is the following weighted mean of the bh:

bc =
L∑
h=1

N2
h(1− nh

Nh
)s2
xh/nh∑L

h=1N
2
h(1− nh

Nh
)s2
xh/nh

bh, (6.46)

which – upon substitution of (6.43) – can be written as

bc =
L∑
h=1

N2
h(1− nh

Nh
)syxh/nh∑L

h=1 N
2
h(1− nh

Nh
)s2
xh/nh

, (6.47)

see Cochran (1977, Section 7.10).
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6.2.3 Estimation of sample size for the regression estimator

To find the sample size needed to estimate µ = Ȳ when the regression estimator is used, let
d = |µ− ȳ| be the margin of error we are willing to tolerate, let t be the value of the normal
deviate corresponding to the desired confidence probability. Then the minimum sample size
required follows from

d = tσ ˆ̄YL
= t

√(
N − n
N

)
S2
y

n
(1− ρ2), (6.48)

see (6.36). Solving (6.48) with respect to n we obtain

n =
t2S2

y(1− ρ2)

d2 +
t2S2

y(1−ρ2)

N

, (6.49)

which reduces to

n0 =
t2S2

y(1− ρ2)

d2
(6.50)

when N is very large.
For the estimation of sample size based on the absolute error d = |Nµ−Nȳ| of the total

Nµ = Y in the population we have that

d = tσŶL , (6.51)

or, upon substitution of (6.39) in (6.51),

d = t

√
N(N − n)

S2
y

n
(1− ρ2). (6.52)

Solving (6.52) for n, we find that

n =
t2S2

y(1− ρ2)

d2

N2 +
t2S2

y(1−ρ2)

N

, (6.53)

or – if n
N
< 0.1 –

n0 =
t2N2S2

y(1− ρ2)

d2
. (6.54)
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Chapter 7

Systematic and repeated sampling

So far we have assumed that we need information on the population at only one point or
during only one period in time. We now consider the situation where we need to observe
a population two or more times, or during a prolonged period of time. One reason why
we would like to draw two consecutive samples from the population is in order to obtain
auxiliary information from the first sample, and then use this information to obtain a more
precise estimate of the variable of interest in the second sample. This situation is called
double sampling and is discussed in Section 7.3. A second reason why we could be interested
in drawing two or more consecutive samples of the population is in order to be able to
evaluate changes due to the effect of external forces acting on the population. The question
then arises: is it best to repeatedly observe the same or different sampling units each time?
This is the topic of Section 7.4.

First, however, we discuss yet another sampling method: systematic sampling.

7.1 Systematic sampling

In systematic sampling it is assumed that the N units in the population are numbered 1
to N in some order. To select a systematic sample of n units, a unit at random is selected
from the first k units and every kth unit thereafter. If k = 15 for example, and if the first
randomly selected unit is number 13, then the subsequent units are numbers 28, 43, 58, et
cetera. The selection of the first unit determines the whole sample. In order for the sample
to “cover” the whole population the value of the integer k should be chosen equal to, or
approximately equal to N

n
. This is called an every kth systematic sample.

Consider the artificial population shown in Table 7.1. If a systematic sample of 4 elements
is to be selected from this population, then k is chosen to be k = N

n
= 32

4
= 8 in order to

cover the whole population. If the first randomly selected number happens to be 5, then
the sample consists of element numbers 5, 13, 21, and 29, with values 11, 27, 49, and 65,
respectively. This is row 5 in Table 7.1.

Since N is not in general an integral multiple of k, different systematic samples from the
same finitie population may vary by one unit in size. With N = 23 and k = 5, for example, a
total of five different systematic samples may be obtained. The three samples starting with
unit numbers 1, 2, and 3 have n = 5, while those starting with unit numbers 4 and 5 have
n = 4. This introduces a disturbance in the theory of systematic sampling. The disturbance
is negligible if n is larger than 50 and will be ignored here. Even when n is small it is unlikely

93
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Table 7.1: Population of 32 units numbered from 1 to 32

unit value unit value unit value unit value
number yi number yi number yi number yi Total Mean

1 1 9 13 17 37 25 53 104 26
2 3 10 17 18 39 26 61 120 30
3 3 11 19 19 43 27 63 128 32
4 5 12 21 20 41 28 57 124 31
5 11 13 27 21 49 29 65 152 38
6 11 14 25 22 47 30 65 148 37
7 11 15 31 23 51 31 71 164 41
8 15 16 33 24 57 32 75 180 45

to be large. Cochran (1977, p.206) also discusses an alternative systematic sampling method
providing both a constant sample size and an unbiased sample mean.

A systematic sample can be conceived of as a kind of stratified sample with one observa-
tion in each stratum. However, whereas in stratified random sampling random numbers have
to be drawn for each sample unit, in systematic sampling the first random number specifies
for all strata which fixed unit is selected.

The first advantage of systematic sampling over random sampling is therefore that it
only requires the drawing of one random number instead of n. And we only need to count
simply k units further instead of using a count that changes all the time. If the units in the
population are in a certain order, systematic sampling also guarantees that the sample is
spread evenly over the population, whereas in random sampling some subpopulations may
accidentally be underrepresented or even not represented at all.

If N = nk, the mean of a systematic sample, which we will denote by ysy, is an unbiased
estimate of Ȳ for a randomly located systematic sample. Let yij denote the jth element of
the ith systematic sample, j = 1, . . . , n, i = 1, . . . , k, and let ȳi denote the mean of the ith
sample. Then the variance of the mean of a systematic sample of size n is

V(ȳsy) = σ2
ȳsy =

N − 1

N
S2 − k(n− 1)

N
S2
wsy, (7.1)

where

S2
wsy =

1

k(n− 1)

k∑
i=1

n∑
j=1

(yij − ȳi)2 (7.2)

is the variance among units that lie within the same systematic sample, see Cochran (1977,
p.208) for a proof.

Example 7-0. Consider the artificial population in Table 7.1. What is the variance of
the mean for a simple random sample of size n = 4 from this population? And the variance
of the mean for a systematic sample of size n = 4?
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Answer. The variance of the mean for a simple random sample of size n = 4 from this
population is obtained from (2.18):

V(ȳ) = σ2
ȳ =

S2

n
,

with S2 as defined in (2.8). Since the mean of the data in Table 7.1 is Ȳ = 1120
32

= 35, the
variance of y in the population is

S2 =

∑N
i=1(yi − Ȳ )2

N − 1
,=

15, 840

31
= 510.9677,

from which it follows that the variance of the mean for a simple random sample of size n = 4
is

V(ȳ) =
510.9677

4
= 127.74.

For the variance of the mean of a systematic sample from the population in Table 7.1 we
first calculate (7.2):

S2
wsy =

1

8(4− 1)
(14, 720) = 613.3333,

from which it follows that

V(ȳsy) =
N − 1

N
S2 − k(n− 1)

N
S2
wsy =

32− 1

32
(510.9677)− 8(4− 1)

32
(613.3333) = 35.

We conclude that – for these data at least – the systematic sample estimate is much more
precise than the simple random sample estimate.

So how does systematic sampling generally compare with simple and stratified random
sampling? We may distinguish four situations.

1. The manner in which the units of the population are ordered in the sampling frame
is completely unrelated to the values of the variable of interest. This is often true
when units are ordered alphabetically. In this situation a systematical sample will be
as precise as a simple random sample, and the variance formulas of Chapter 2 can be
used.

2. The numbering of the elements of the population in the sampling frame is based on
some qualitative characteristic, e.g. the location where someone is living. The relative
frequency of these characteristics in a systematic sample will then be very similar to
their frequency in the population. We have basically applied proportional stratification,
which is more precise than simple random sampling, see also Chapter 3.

3. The numbers assigned to the units of the population in the sampling frame globally
increase or decrease with the values of a continuous auxiliary variable (e.g., some
measure of size) that is highly correlated with the variable of interest. This has the
effect that the means of the research variable are very different in each population layer
of k elements. The implicit stratification then obtained with systematic sampling is
much more precise than simple random sampling, see Example 7-0 where the numbering
of the units is clearly correlated with the values of the yi.
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4. When there happens to be a periodic fluctuation in the population – meaning that
population elements with rank numbers in the sampling frame that are a multiple of a
certain value c have about the same value – then the variance of a systematic sample
will underestimate the real variance in the population.

In systematic sampling there are some problems to obtain sample estimates of the vari-
ance of the mean. According to Moors and Muilwijk (1975) one often approximates this
variance by using formula (2.28) for simple random sampling without replacement (in sys-
tematic sampling an element can never be selected more than once). In the just mentioned
situation 1, no problems arise with this formula, while in situations 2 and 3 the variance
will be estimated as being too large, meaning that we then obtain an estimate of precision
that can only err on the safe side. Cochran (1977, p.225) provides dedicated formulas for
calculating sample estimates of the variance of the mean in situations 2 and 3, but also warns
that these variance estimates can be badly biased when applied to the wrong situation.

7.2 Stratified systematic sampling

Just as a simple random sample can be selected from each stratum in stratified random
sampling, we can also draw a systematic sample from each stratum. In the latter case the
starting points of the systematic samples in each stratum should be independently deter-
mined. This method will be more precise than stratified random sampling if systematic
sampling within strata is more precise than simple random sampling with strata.

If ȳsyh is the mean of the systematic sample in stratum h, h = 1, . . . , L, the estimate of
the population mean Ȳ and its variance are

ȳstsy =
L∑
h=1

Whȳsyh, (7.3)

and

V(ȳstsy) = σ2
ȳstsy =

L∑
h=1

W 2
hV(ȳsyh). (7.4)

The problem of finding a sample estimate of this variance is the same as discussed in the
previous section.

7.3 Double sampling

Double sampling is a sampling method where initially a random sample is selected for the
purpose of obtaining auxiliary information only, after which a second random sample is
drawn from the first sample in order to observe the actual variable of interest in addition to
the auxiliary variable. Double sampling, also known as two-phase sampling, is not only useful
for obtaining auxiliary information for ratio and regression estimation (see Chapter 6), but
also for finding information for stratified random sampling (see Chapter 3) and for handling
non-response.
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7.3.1 Double sampling for ratio estimation

Let yi be the variable of interest, xi be the auxiliary variable, n′ be the number of units in
the first sample, which includes the second sample, and let n < n′ be the number of units in
the second sample. Variables xi and yi are only observed in the second sample. In the first
sample only xi is observed. It is assumed that the observation of the yi is expensive whereas
the observation of the xi is (much) cheaper.

If the first sample is used to obtain

x̄′ =
1

n′

n′∑
i=1

xi, (7.5)

as an estimate of X̄ in a ratio estimate of the population mean Ȳ , the ratio estimator of the
population mean Ȳ is

ȳR = R̂x̄′ =

∑n
i=1 yi∑n
i=1 xi

x̄′, (7.6)

with approximate variance equal to

V(ȳR) = σ2
ȳR

.
=

(
1

n′
− 1

N

)
S2
y +

(
1

n
− 1

n′

)
(S2

y − 2RSyx +R2S2
x). (7.7)

and estimated variance equal to

v(ŶR) = estimated σ2
ŶR

=
(N − n′)

N

s2
y

n′
+

n′ − n
n′n(n− 1)

n∑
i=1

(yi − R̂xi)2. (7.8)

The ratio estimator of the population total Y is

ŶR = R̂X̂ =

∑n
i=1 yi∑n
i=1 xi

X̂, (7.9)

and

X̂ =
N

n′

n′∑
i=1

xi. (7.10)

The estimated variance of this estimator is

v(ŶR) = estimated σ2
ŶR

= N(N − n′)
s2
y

n′
+N2 n′ − n

n′n(n− 1)

n∑
i=1

(yi − R̂xi)2. (7.11)

Example 7-1. A forest resource manager is interested in estimating the total number of
dead trees in a 400 acre area of heavy infestation. He divides the area in 200 plots of equal
size and uses arial photo counts to find the number of dead trees in a random sample of 18
plots. He then randomly samples 8 plots out of these 18 plots and conducts a ground count
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Table 7.2: Counts of dead trees in a random sample of 8 plots

arial photo count arial photo count
Plot first sample (x′i) second sample (xi) ground count (yi)

1 5
2 7 7 9
3 10 10 13
4 6
5 7 7 10
6 9 9 11
7 3
8 6
9 8

10 11
11 5
12 9 9 10
13 12
14 13
15 3 3 4
16 20 20 25
17 15 15 17
18 4

Total 153 80 99

on these 8 plots. The resulting counts are given in Table 7.2. Based on these counts, what
is the estimated total number of dead trees in the 400 acre area? And what is the estimated
variance of this estimate?

Answer. In this example N = 200, n′ = 18, and n = 8, and the estimated total number
of dead trees in the 400 acre area is

ŶR = R̂X̂ =

∑n
i=1 yi∑n
i=1 xi

N

n′

n′∑
i=1

xi =

(
99

80

)(
200

18

)
(153) = 2, 103.75.

Since s2
y =

∑n
i=1(yi−ȳ)2

n−1
= 39.4384 and

∑n
i=1(yi − R̂xi)2 = 6.1928, the estimated variance of

this estimate equals

v(ŶR) =N(N − n′)s
2

n′
+N2 n′ − n

n′n(n− 1)

n∑
i=1

(yi − R̂xi)2

=200(200− 18)

(
39.4384

18

)
+ 2002

(
18− 8

(18)(8)(8− 1)

)
(6.1928)

=79, 753.20889 + 2, 457.460317 = 82, 210.66921.
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7.3.2 Double sampling for regression estimation

In some applications of double sampling the auxiliary variable xi is used to obtain a regression
estimate of the population mean Ȳ . Just as in double sampling for ratio estimation, in the
first (large) sample of size n′, only xi is measured. In the second step, a random subsample
of size n = n′

k
is taken, and both xi and yi are measured.

Letting yi and xi be known for every unit in the sample, and let the population mean
µx = X̄ of the xi also be known. Then the linear regression estimator of Ȳ , the population
mean of the yi, is

ȳL = ȳ + b(x̄′ − x̄), (7.12)

where x̄′ and x̄ are the means of the xi in the first and second samples, and b is the least
squares regression coefficient of yi on xi, computed for the second sample. Just as in one-stage
sampling, this regression estimator will be biased, see also Section 6.2.

Assuming random sampling and 1
n′ and 1

n
negligible withe respect to 1, the approximate

variance of regression estimator (7.12) of the population mean is

V( ˆ̄YL) = σ2
ˆ̄YL

.
=
S2
y(1− ρ2)

n
+
S2
yρ

2

n′
−
S2
y

N
, (7.13)

where ρ = Syx

SySx
, the population correlation between y and x, Sy and Sx are the standard

deviation of y and x in the population, respectively, and Syx is their population covariance.
See Cochran (1977, p.339) for a proof.

If terms in 1
n

are negligible, a sample estimate of V( ˆ̄YL) is

v( ˆ̄YL) = estimated σ2
ˆ̄YL

.
=
s2
y.x

n
+
s2
y − s2

y.x

n′
−
s2
y

N
, (7.14)

where

s2
y.x =

1

n− 2

(
n∑
i=1

(yi − ȳ)2 − b2(
n∑
i=1

(xi − x̄)2)

)
(7.15)

is an unbiased estimate of S2
y(1− ρ2) and

s2
y =

∑n
i=1(yi − ȳ)2

n− 1
(7.16)

is an unbiased estimate of S2
y .

If the second sample is small and terms in 1
n

are not negligible relative to 1, an estimate
of variance is

v( ˆ̄YL) = estimated σ2
ˆ̄YL

= s2
y.x

(
1

n
+

(x̄′ − x̄)2∑n
i=1(xi − x̄)2)

)
+
s2
y − s2

y.x

n′
−
s2
y

N
, (7.17)

see also Cochran (1977, p.343).
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7.3.3 Double sampling for stratification

Double sampling can also be used when stratified random sampling is the method of pref-
erence, but the sizes of the different strata in the population are unknown. A large simple
random sample of size n′ is drawn from the total population of N units, and the only ob-
servation made in this fist large sample is how many units n′h (h = 1, . . . , L) are in each
stratum. Unbiased estimates of the population stratum sizes Wh = Nh

N
are then obtained

from wh =
n′
h

n′ . Next, a second sample is selected by stratified random sampling from the
first sample. These units are classified into strata with nh units selected from the n′h sample
units in stratum h, and the variable of interest yhi is obtained for each unit in this second
sample. Letting ȳh =

∑nh

i=1
yhi
nh

denote the sample mean of stratum h in the second sample,

an unbiased estimate of the population mean Ȳ =
∑
WhȲh is obtained with

ȳst =
L∑
h=1

whȳh. (7.18)

The objective of the first sample is therefore to estimate the strata weights Wh; that of the
second sample is to estimate the strata means Ȳh. The variance of ȳst is

V(ȳst) = σ2
ȳst = S2

(
1

n′
− 1

N

)
+

L∑
h=1

WhS
2
h

n′

(
n′h
nh
− 1

)
, (7.19)

where S2 is the population variance. An unbiased sample estimate for this variance is

v(ȳst) = estimated σ2
ȳst =

(
N − n′

N

)(
1

n′ − 1

) L∑
h=1

wh(ȳh − ȳst)2

+
N − 1

N

L∑
h=1

(
n′h − 1

n′ − 1
− nh − 1

N − 1

)
whs

2
h

nh
, (7.20)

where s2
h is the stratum sample variance in the second sample.

Example 7-2. A shoe store wants to estimate the average number of pairs of shoes
owned by the students living in a certain college town neighbourhood. They reason that a
stratified sample based on gender could be a good approach but do not know the distribution
of the gender in that neighbourhood. They also do not know the gender of the respondent
until after contacting them. They therefore use double sampling by first contacting 160
randomly selected students in that neighbourhood and ask them about their gender. They
find that this first sample consists of 64 males and 96 females. They next randomly sample
8 males and 12 females from the 64 males and 96 females in this first sample, and ask them
to count the number of pairs of shoes that they have at home and report back to them. The
data for this second sample are given in Table 7.3. Based on these observations, what is the
estimated average number of pairs of shoes these students own? And what is the estimated
variance of this average?

Answer. In this example the size of the first sample is n′ = 160, with n′1 = 64 males
and n′2 = 96 females. The unknown proportion W1 = N1

N
of males in the population is
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Table 7.3: Number of pairs of shoes owned by 8 male and 12 female students

Male Female
5 17
6 19
9 13
5 16
9 8
7 11
5 15
8 19

12
13
33
20

Total 54 196

therefore estimated to be w1 =
n′

1

n′ = 64
160

= 0.4, and the unknown proportion W2 = N2

N
of

females in the population is estimated to be w2 =
n′

2

n′ = 96
160

= 0.6. In the second sample,
the average number of pairs of shoes for males is found to be ȳ1 = 54

8
= 6.75 with a variance

of s2
1 = 3.073, and that for females is found to be ȳ2 = 196

12
= 16.33 with a variance of

s2
2 = 40.5769, see Table 7.3. The estimated average number of pairs of shoes owned by the

total student population in that neighbourhood is therefore estimated to be

ȳst =
L∑
h=1

whȳh = (0.4)(6.75) + (0.6)(16.33) = 12.498.

We do not know N , the total number of students in that neighbourhood. However, if we
assume it to be quite large, (7.20) can be simplified to

v(ȳst) =

(
1

n′ − 1

) L∑
h=1

wh(ȳh − ȳst)2 +
L∑
h=1

(
n′h − 1

n′ − 1

)
whs

2
h

nh
,

yielding

v(ȳst) =

(
1

160− 1

)(
0.4(6.75− 12.498)2 + 0.6(16.33− 12.498)2

)
+

(
64− 1

160− 1

)
(0.4)(3.073)

8
+

(
96− 1

160− 1

)
(0.6)(40.5769)

12
= 0.13853 + 1.2731 = 1.4116.

7.3.4 Double sampling for non-response

An ingenious application of double sampling is the adjustment for non-response in a survey.
In this case the first sample of size n′ is a simple random sample from a population of N
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units. These units are then stratified in two strata: n′1 contains those sample units that
respond, and n′2 = n′ − n′1 consists of the sample units that do not respond. In the second

phase another random sample of size n2 =
n′

2

k
< n′2 is drawn from the n′2 non-respondents in

the first round and a massive effort is made to obtain information on the variable of interest
for all these n2 units. We have then a double sampling setting where n′1 = n1, and n2 is the
size of the second sample.

Example 7-3. In a university of 1000 students, a questionnaire is mailed to a simple
random sample of 106 students asking them about the amount of time they spend studying
each week. Out of these 106 students 46 respond. From the 60 non-respondents, a simple
random sample of 20 is selected and intensive efforts are made by telephone and personal visit
to obtain responses. This yields the data shown in Table 7.4. Based on these observations,
what is the estimated average number of hours these students study each week? And what
is the estimated variance of this average?

Table 7.4: Double sampling for average number of hours spent studying per week

Students responding Students contacted
to questionnaire and responding to telephone

(first round) and visit (second round)
Sample mean 20.5 10.9

Sample standard deviation 6.2 5.1
Sample size 46 20

Answer. In this example the first sample of n′ = 106 students can be stratified into the
following two strata: the respondents with a size of n′1 = 46 and the non-respondents with
a size of n′2 = 60. The unknown proportion W1 = N1

N
of respondents in the population is

therefore estimated to be w1 =
n′

1

n′ = 46
106

= 0.434, and the unknown proportion W2 = N2

N

of non-respondents in the population is estimated to be w2 =
n′

2

n′ = 60
106

= 0.566. In the
next step a second random sample of n2 = 20 is drawn from the n′2 = 60 students in the
non-respondent stratum of the first sample. The average of the first stratum in the first
sample is y1 = 20.5 hours with a standard deviation of s1 = 6.2; the average of the second
stratum in the second sample is y2 = 10.9 hours with a standard deviation of s2 = 5.1, see
Table 7.4. The estimated average number of hours spent studying in the total population of
N = 1000 students is therefore estimated to be

ȳst =
L∑
h=1

whȳh = (0.434)(20.5) + (0.566)(10.9) = 15.0664.

According to (7.20), and because n′1 = n1 = 46 in this case, the estimated variance of this
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mean is

v(ȳst) =

(
N − n′

N

)(
1

n′ − 1

) L∑
h=1

wh(ȳh − ȳst)2 +
N − 1

N

L∑
h=1

(
n′h − 1

n′ − 1
− nh − 1

N − 1

)
whs

2
h

nh

=

(
1000− 106

1000

)(
1

106− 1

)(
0.434(20.5− 15.0664)2 + 0.566(10.9− 15.0664)2

)
+

1000− 1

1000

(
(

46− 1

106− 1
− 46− 1

1000− 1
)
(0.434)(6.2)2

46
+ (

60− 1

106− 1
− 20− 1

1000− 1
)
(0.566)(5.1)2

20

)
= 0.1928 + 0.5382 = 0.731.

Correcting for non-response with the double sampling procedure yields a substantially smaller
estimate of 15 for the average number of hours spent studying by these students than the
estimate of 20.5 hours found for the first phase respondents only.

With double sampling for non-response it is also possible to estimate the required sample
size of n′ for given budget. Let the cost of taking the sample be

c0n
′ + c1n

′
1 +

c2n
′
2

k
, (7.21)

where the c’s are the costs per unit: c0 is the cost of making the first attempt, c1 is the cost
of processing the results from the first attempt,and c2 is the cost of getting and processing
the data in the second stratum. Letting W1 and W2 denote the population proportions in
the two strata of respondents and non-respondents then the expected cost is

C = c0n
′ + c1W1n

′ +
c2W2n

′

k
, (7.22)

since Whn
′ = Nh

N
n′ =

n′
h

n′ n
′ = n′h, wh =

n′
h

n′ being an unbiased estimate of Wh = Nh

N
. It follows

from (7.18) that an unbiased estimate of Ȳ is obtained with

ȳ′ = w1ȳ1 + w2ȳ2 =
n′1ȳ1 + n′2ȳ2

n′
, (7.23)

where ȳ1 and ȳ2 are the means of the samples of sizes n1 = n′1 and n2 =
n′

2

k
. From (7.20) we

obtain

V(ȳ′) =S2

(
1

n′
− 1

N

)
+
W1S

2
1

n′

(
n′1
n1

− 1

)
+
W2S

2
2

n′

(
n′2
n2

− 1

)
=S2

(
1

n′
− 1

N

)
+
W2S

2
2

n′

(
n′2
n2

− 1

)
, (7.24)

since n′1 = n1. Substitution of n2 =
n′

2

k
in (7.24) yields

V(ȳ′) =S2

(
1

n′
− 1

N

)
+
W2S

2
2(k − 1)

n′
. (7.25)
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The quantities n′ and k are then chosen to minimize the product C(V + S2

N
). From (7.25)

and (7.22) we have

V +
S2

N
=

(S2 −W2S
2
2)

n′
+
kW2S

2
2

n′
. (7.26)

and

C = (c0 + c1W1)n′ +
c2W2n

′

k
. (7.27)

Optimizing C(V + S2

N
) with respect to k, it is not very difficult to verify that the optimum

is found for

kopt =

√
c2(S2 −W2S2

2)

S2
2(c0 + c1W1)

. (7.28)

The initial sample size n′ can be chosen either to minimize C for given V , or V for given
C by solving n′ from (7.26) or (7.27). If V is specified, it follows from (7.26) that

n′opt =
N(S2 + (k − 1)W2S

2
2)

NV + S2
, (7.29)

where V is the variance (7.25) of the estimated population mean. For given total budget C,
on the other hand, it follows from (7.27) that

n′opt =
kC

k(c0 + C1W1) + c2W2

. (7.30)

The solution requires a knowledge of W2. This can often be estimated from previous
experience. Moreover, in addition to S2, the variance in the population whose value must
be estimated in advance in any problem of sample size, we also need an estimate of S2

2 , the
variance in the non-response stratum. The latter value may be harder to predict, and it
will probably not be the same as S2. In surveys made by mail of economic enterprise, for
example, the respondents tend to be larger operators, with larger between-unit variances
than the non-respondents.

If W2 is not well-known, Cochran (1977) suggests to obtain an approximation of n′opt
from (7.28) and (7.29) by substituting a range of assumed values of W2 between 0 and a
safe upper limit, and then to use the maximum n′opt in this series as the initial sample size
n′. When the replies to the mail survey have been received, the value of n′2 is known. In
order to obtain a value for k with this method, the variance Vc(ȳ

′) conditional on the known
values of n2 and n′ should be used. This variance is

Vc(ȳ
′) =S2

(
1

n′
− 1

N

)
+
n′2S

2
2(k − 1)

n′2
. (7.31)

Equation (7.31) is solved to find the k that gives the desired conditional variance. The cost
for this method is usually only slightly higher than the optimum cost for known W2.

With stratified sampling, the optimum values of the n′h and the kh in the individual strata
are rather complex. According to Cochran (1977), a good approximation is to estimate first,
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by the methods in Section 3.4 and Section 3.6, the sample sizes nh that would be required
in the strata if there were no non-response. Then, from (7.29), if W2 = 0, we have

n′0 =
NS2

NV + S2
, (7.32)

and (7.29) can therefore be written as

n′opt = n0

(
1 +

(k − 1)W2S
2
2

S2

)
. (7.33)

Applying the latter equation separately to each stratum gives an approximation to the
optimal n′h. The values of kh are found by applying (7.28) in each stratum.

These techniques can also be used with the ratio or the regression estimator. With the
ratio estimator, the quantities S2 and S2

2 are replaced by S2
d and S2

2d, where di = yi − Rxi.
With the regression estimator, S2 becomes S2(1− ρ2) and S2

2 becomes S2
2(1− ρ2).

Example 7-4. In a university of 1, 000 students, we want to find the average amount
of money the students spend on living. We expect the non-response to be about 40%. It is
also expected that the respondents have a larger variance than the non-respondents. The
overall variance in the population is estimated to be S2 = 120 while the variance for the
non-respondents is estimated to be S2

2 = 80. The initial costs of sampling each respondent is
0, the cost of a standard response is 1, and the cost of a call-back is 4. What is the number
of students to sample in the first round, and how many students should be subjected to a
call-back, if we require the variance of the estimator to be equal to 5?

Answer. We have c0 = 0, c1 = 1 and c2 = 4. Moreover, W1 = 0.6 and W2 = 0.4. The
optimal value for k, the fraction to sample from the non-respondents in the first sample, can
be found with (7.28):

kopt =

√
c2(S2 − w2S2

2)

S2
2(c0 + c1w1)

=

√
(4)(120− (0.4)(80))

(80)(1)(0.6)
=

√
352

48
= 2.71.

Since V = 5 the optimal size of the first sample is obtained using (7.29):

n′opt =
N(S2 + (k − 1)w2S

2
2)

NV + S2
=

1000(120 + (2.71− 1)(0.4)(80))

(1000)(5) + 120
=

174, 720

5, 120
= 34.125.

Rounding up we have n′ = 35, from which it follows that n′2 = w2n
′ = (0.4)(35) = 14. So

for a precision of V = 5 we require a random sample of 35 students in the first phase, and

we need to call back n2 =
n′

2

k
= 14

2.71
= 5.16, i.e., 6 students in the second phase.

Example 7-5. In a survey the first sample is taken by mail and the response is expected
to be about 50%. The precision desired is that which would be given by a simple random
sample of size 1, 000 if there were no non-response. The cost of mailing a questionnaire is
10 cents, and the cost of processing the completed questionnaire is 40 cents. To carry out a
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personal interview costs 4.10 euro’s. How many questionnaires should be sent out and what
percentage of the non-respondents should be interviewed?

Answer. We have c0 = 0.10, c1 = 0.40, and c2 = 4.50. The precision desired is V = S2

1000
.

Moreover, W1 = W2 = 0.5. If the variances S2 and S2
2 are assumed to be equal, and N is

assumed to be large it follows from (7.28) that

kopt =

√
c2(S2 −W2S2

2)

S2
2(c0 + c1W1)

=

√
c2(1−W2)

c0 + c1W1

=

√
(4.5)(0.5)

0.10 + (0.40)(0.5)
= 2.739,

and from (7.29) that

n′opt =
N(S2 + (k − 1)W2S

2
2)

NV + S2
=

(S2 + (k − 1)W2S
2
2)

V + S2

N

.
=

(S2 + (k − 1)W2S
2
2)

V

=
(S2 + (k − 1)W2S

2
2)

S2

1,000

= 1, 000(1 + (k − 1)W2) = 1, 000(1 + (2.739− 1)(0.5)) = 1, 869.5.

This means that 1, 870 questionnaires should be mailed, and of the 935 expected not to be
returned a random sample of 935

2.739
= 341 should be interviewed. The total cost of the survey is

C = (c0+c1W1)n′+ c2W2n′

k
= (0.10+(0.40)(0.5))(1, 870)+ (4.50)(0.5)(1,870)

2.739
= 561+1, 536 = 2, 097

euro’s.

7.4 Continuous sampling

So far we have assumed that we need information on the population at only one point or
during only one period in time. We now consider the situation where we need to investigate
a population several times or during a prolonged period of time. The question then arises:
is it best to repeatedly observe the same or different sampling units each time?

As discussed by Cochran (1977, Section 12.10), given the data from a consecutive series
of samples, the answer to this question depends on the kind of quantity for which we may
wish estimates:

• The change in Ȳ from one occasion to the next?

• The average value of Ȳ over all occasions?

• The average value of Ȳ for the most recent occasion?

We first consider the case of two consecutive surveys. Let the population variables of
interest on the two occasions be x and y, respectively, and their correlation be ρ. Further
assume that both samples are random and of equal size, and that the finite population
correction is negligible. Suppose that the randomly selected part W of the first sample is
replaced by other randomly selected elements on the second occasion, while the other part
1−W (the permanent part) remains the same. We distinguish three situations:

• The purpose of the data collection is the estimation of changes over time in the means
X̄ and Ȳ , or totals X and Y . This is most appropriate if we want to study the effects
of forces that are known to have affected the population of interest. In this case we
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want the estimated difference ˆ̄X − ˆ̄Y to be as accurate as possible. Both the mean of
the permanent part x̄′ and the mean x̄′′ of the rest is then an unbiased estimator of
X̄. An unbiased estimator of X̄ is obtained with the following weighted average:

ˆ̄X = Wx̄′ + (1−W )x̄′′ (7.34)

for the first survey, and

ˆ̄Y = Wȳ′ + (1−W )ȳ′′ (7.35)

for the second survey, where x̄′ and ȳ′ are obtained from the same sample fraction, and
x̄′′ and ȳ′′ from two different sample fractions. Because the different sample fractions
are independent we have that

V( ˆ̄Y − ˆ̄X) = W 2V(ȳ′ − x̄′) + (1−W )2V(ȳ′′ − x̄′′). (7.36)

For the two variances on the right side of (7.36) we find that

V(ȳ′ − x̄′) =
1

Wn
(S2

x − 2ρSxSy + S2
y), . (7.37)

the sample size of this part being Wn, and

V(ȳ′′ − x̄′′) = V(ȳ′′) + V(x̄′′) =
1

(1−W )n
(S2

x + S2
y), (7.38)

ȳ′′ and x̄′′ being calculated from two independent samples of size (1−W )n. Substitution
of (7.37) and (7.38) in (7.36) yields

V( ˆ̄Y − ˆ̄X) =
1

n
(S2

x − 2WρSxSy + S2
y). (7.39)

When ρ is positive, which is the usual situation, it follows from (7.39) that the precision

of the difference ˆ̄X − ˆ̄Y is maximised by choosing W as large as possible. Since this
largest value is W = 1, we see that precision in measuring change is largest when the
random sample on the two occasions is left unchanged. In practice this is not always
feasible, because part of the population ceases to exist (e.g., emigration) while another
part of the population is renewed (e.g., immigration).

• The purpose of the data collection is to estimate the sum or average on the two
occasions as accurately as possible. Again starting from (7.34) we now find that

V( ˆ̄Y + ˆ̄X) =
1

n
(S2

x + 2WρSxSy + S2
y). (7.40)

Again assuming ρ to be positive, it follows from (7.40) that the precision of the sum
ˆ̄X + ˆ̄Y is maximised by choosing W as small as possible. Since this smallest value is
W = 0, we see that precision in measuring the average or total of the two occasions
is largest when the random sample of the first occasion is completely replaced on the
second occasion.
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• The purpose of the data collection is to estimate the value of Ŷ or ˆ̄Y as accurately as
possible on the second occasion. In this case we can replace part, usually at least one
half, of the sample and apply two-phase or double sampling (see Section 7.3) with a
regression estimator.

When the population is observed on more than two occasions, for the already mentioned
practical reasons one often uses gradual rotation of the sample. In the second year, for
example, one quarter of the previous sample is replaced, in the third year yet another quarter
of the original sample is replaced, et cetera, meaning that the whole sample will have been
rotated after the fourth year. In this way, no one will be part of the sample for more than
four years. On this topic Cochran (1977, Chapter 12) further concludes that “field costs are
likely to be lower if the same units are retained for a number of occasions. If estimates of
the change in the population total or mean are of interest, this factor also points toward
matching more than half the units from one occasion to the next. It is convenient to keep
the weights and the proportion matched constant, instead of changing them every occasion.
... increase in the proportion matched from 1

2
to 3

4
produces substantial gains in efficiency for

the estimates of change at the expense of smaller losses in efficiency for the current estimates.
The results suggest that retention of 1

2
, 3

4
, or 4

5
from one occasion to the next may be a good

practical policy if current estimates and estimates of change are both important.”



Chapter 8

Other sources of error

In the previous chapters we only discussed sampling error as a potential source of deviation
between population values and their sample estimates. Sampling errors arise due to the
fact that we only investigate part of the population, and they disappear when the whole
population is observed. In this chapter we discuss other sources of error not considered so
far.

8.1 Problems with the sampling frame

In this section we follow the recommendations on (the solution of) problems with the sam-
pling frame as discussed in Moors and Muilwijk (1975). The sampling frame is the admin-
istrative counterpart of the population of interest. It usually consists of one or more lists or
databases containing all elements of the population, but this is not necessary as long as a
systematic description is provided of the way in which the elements can be found. Military
maps, for example, can be used as a frame for all parcels in a region, and these need not be
put on a list. In the case of two-stage sampling (see Chapter 5), a frame for all secondary
units is not required: it is enough to have a frame of all primary units together with frames
of the elements within each of the randomly drawn primary units.

There are three problems that can arise with sampling frames: missing elements, elements
that are included more than once, and elements that do not belong to the population of
interest. In these cases three general approaches may be considered:

• We can try and correct the complete sampling frame. This approach, however, is both
costly and time-consuming.

• We can redefine the population according to the possibilities offered by the frame.

• We can ignore the problems and consider the frame to be ideal. If the effect on the
results is small, this approach can hardly be argued against.

Several of these problems arise because the frame always slightly lags behind the actual
situation. Even when changes in the population are reported quickly, delays occur in the
administrative processing of the mutations.

109
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8.2 Missing elements

Incompleteness of the frame is a frequent problem, that is also often difficult to fix. We can
have random missing elements, as a result of errors or mistakes, and a systematical lack of
information for certain subpopulations. An example of the latter situations concerns new
elements of the population that have not yet been processed. There are two conceivable
methods to solve for incompleteness of the frame. The first method is to use two different
frames of the same population, if available. By comparing the two frames, random missing
elements may be tracked down, and often also systematic missing elements. With this first
method we may again distinguish two cases:

• We use frame 1, with the missing elements in 1 supplemented from frame 2. This is
only feasible when frame 2 is not too large.

• Frames 1 and 2 are used together. This, however, results in new problems because
some elements will be registered in both frames, see also Section 8.4.

In the nineteen seventies in the Netherlands passenger cars were in principle registered twice,
for example: once in the database of the “Dienst motorrijtuigenbelasting” (Center of motor
vehicle taxes) and once in the license plate database of the Dutch “Rijksdienst Wegverkeer”
(Vehicle Technology and Information Center). The first database was easy to use because
it had been computerized, but it was also incomplete; at that time the second database was
therefore used to supplement the first.

As a second example, the population registers of all Dutch municipalities together are a
sampling frame for the Dutch population, except for the sailing and traveling population.
Until the ninety nineties these people without fixed address were registered in the “Centraal
persoonsregister” (Central population register), and the missing elements in the former frame
could therefore be supplemented with the elements in the latter frame.

The second method to control for missing elements is during the survey; this is mainly
useful for tracking down small numbers of missing elements. With this method, it is checked
for each unit in the sample whether the next unit of the population is registered in the
sampling frame. If it is not, the latter unit is added to the sample and also measured (and
the next if it is also missing from the frame).

8.3 Foreign elements

It often happens that the sampling frame contains elements that do not belong to the popula-
tion of interest. These are called foreign elements. If it is not possible to remove them before
sampling, they have to be eliminated before observation or at least before computation of
the population estimates.

One way to handle the problem of foreign elements that was already mentioned in Sec-
tion 2.10 is to consider the sampling frame to be a hyperpopulation consisting of the sampling
population plus the foreign elements. The sampling population is then a subpopulation in
the sense discussed in Section 2.10. For simple random sampling the formulas in the latter
section can then be applied, and for stratified random sampling those in Section 3.11. How-
ever, there we already noticed that when the size of a subpopulation is unknown the precision
of sample estimates is strongly reduced, unless the subpopulation is almost as large as the
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total population. This procedure also has the effect that the size of the sample from the
frame will be smaller (because it will contain foreign elements which have to be removed),
but this can be compensated by estimating the reduction in size as well as possible and then
increase the original sample size accordingly.

Example 8-1. From a neigbourhood of 400 houses we want to draw a simple random
sample of 100 houses from the municipal address register. The latter register, however, also
contains the addresses of 100 buildings not destined and used for housing. This register is
considered to be a hyperpopulation consisting of the sampling population (the 400 houses)
and the foreign elements (the 100 buildings). The desired sampling fraction of 1

4
is applied to

the complete frame. This yields a random sample of n = 125, of which approximately 25 will
be buildings; these are removed from the sample, and the formulas discussed in Section 2.10
are used.

Another way to handle the problem of foreign elements is to replace each foreign element
encountered in the sample with the next element in the frame that does belong to the pop-
ulation of interest. This means that the sampling probabilities for the population elements
are no longer equal, and usually will have to be evaluated during the field work. This is done
by establishing for each element in the sample how many foreign elements were preceding it
in the frame. The sampling probability for each element is then proportional to this count
plus one.

Example 8-2. For the same situation as in Example 8-1, a sampling fraction of 100
500

= 1
5

is applied to the complete frame, and elements are drawn randomly without replacement.
This yields a random sample of size 100. Now suppose that the first part of the sampling
frame has the structure shown in Table 8.1, where h is a house, f is a foreign element, and
yi is some characteristic of house or building i (e.g., its financial value).

Table 8.1: A sampling frame with foreign elements

h h h f h f f h h h f h h h h . . . h
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 . . . y500

Also suppose that the first six elements in the random sample of size 100 happen to be
the numbers 2, 12, 9, 3, 7, and 5. Then the first element in the sample, element 2, is a
house, see Table 8.1, so it stays in the sample; its probability of being selected is p2 = 1

500
,

since it is not preceded by a foreign element in the frame. The second element in the sample
is element 12, which is also a house. It therefore stays in the sample. It is preceded by a
foreign element in the frame, and its probability of being selected is therefore p12 = 2

500
. The

third element in the sample is 9, which is a house not preceded by a foreign element in the
frame, so it stays in the sample and has a probability of being selected equal to p9 = 1

500
.

The fourth element in the sample is element 3, which is also a house not preceded by a
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foreign element in the frame, so it stays in the sample and also has a probability of p3 = 1
500

of being selected. The fifth element in the sample is element 7. It is not a house, so it is
removed from the sample and replaced by element 8 in the frame. The latter element has
two foreign elements preceding it in the frame, so it has a probability of p8 = 3

500
of being

selected. The sixth element in the sample is element 5. This is a house so it stays in the
sample; it is preceded in the frame by a foreign element, so its probability of being selected
is p5 = 2

500
. An unbiased estimate of the population total is therefore

Ŷ =
1

n

n∑
i=1

yi
pi

= (y2 +
y12

2
+ y9 + y3 +

y8

3
+
y5

2
+ . . . ),

see also Chapter 4.

8.4 Multiple registration of elements

When the sampling frame contains some elements more than once, the sampling probabilities
for those elements are proportional to the number of times they are registered. We may
distinguish between these three cases:

• The number of registrations per element is known or can be easily established. In this
situation the formulas of Chapter 4 can be applied. The first method is particularly
simple when the multiple registrations of one element are recorded together. As the
frame of all practitioners of anthropology, for example, the member lists of all soci-
eties of anthropology can be used. By incorporating a question in the survey about
the number of these societies of which an anthropologist is a member, the sampling
probability of each member of the sample can be established.

• If one of the multiple registrations can always be distinguished from the others then
the latter registrations can be considered foreign elements, to be treated using the
procedures discussed in Section 8.3. When the multiple registrations are registered
one after the other in the frame, for example, we may decide that the element is only
added to the sample if the first registration of these registrations is selected.

• A large part of the frame consists of single registrations; multiple registrations only
occur in another part of the frame. This situation arises when multiple frames are
used, for example. The frame with multiple registrations can then be considered as
a stratum containing foreign elements. As already discussed in Section 8.2, in the
nineteen seventies passenger cars were in principle registered twice in the Netherlands:
once in the database of the Center of motor vehicle taxes and once in the license plate
database of the Dutch Vehicle Technology and Information Center. The latter database
could be used to supplement the former. For each sampled element from the license
plate database it is checked whether it is also registered in the vehicle taxes database;
if so, it is put aside as a foreign element. For the stratum of the license plate database
the formulas of Section 2.10 now apply.
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8.5 Non-response

In almost every survey it is found to be impossible to obtain all the required information
from each element sampled from the population. Reasons can be absence, illness or the
unwillingness of the people in the sample to participate. There are several ways to minimize
or handle this phenomenon which is known as non-response. Non-response introduces bias
in the parameter estimates because non-respondents are usually different on the variable(s)
of interest from those of the population who do participate.

A good preparation of the survey often makes it possible to restrict the amount of non-
response as much as possible. The influence of absence of respondents can be reduced by
choosing a suitable time for interviewing, e.g., not during holidays. The interviewing of
heads of households should preferably be organized in the evenings, after an appointment
has been made by mail or telephone.

Interviews should be designed such that refusal of cooperation is prevented as much as
possible. In the introduction to the survey the interest of the interviewee should be aroused,
the purpose of the interview must clearly be explained, a questionnaire sent by mail should
come with an introduction letter, an interviewer should identify himself. The questions
should be short and clear. As many guarantees of protection of privacy as possible should
be provided.

Even though the reduction of non-response can often be successful, one has to take into
account that there will always be some sample elements for which no data can be obtained. It
is therefore usually necessary to assess the adverse effects of non-response as best as possible,
or to correct for its effects.

When the cause of the non-response is unknown or if there is reason to believe that
its cause is temporary, the first obvious approach to handle non-response is to repeat the
attempt to obtain the required information or to make the respondent cooperate in the
survey.

A second option is to draw a random sample from the non-respondents in the original
sample, and then to try again to obtain the required information from this subsample. This
approach is especially useful when the observation of the latter subsample is more expensive
than that of the original sample. In this case, the double sampling for non-response approach
of Section 7.3.4 can be applied.

The problem of non-response is clearly not solved by replacing the non-respondents in
the sample with population elements that are willing to participate in the survey. At the
same time, such a replacement procedure helps to prevent the reduction of the estimated
minimal sample size as required to obtain a certain pre-specified precision. It is therefore
advisable to always sample more elements than the estimated minimal sample size. These
extra reserve elements can then be used to replace the non-respondents. However, although
this helps to obtain the required precision, it does not solve the bias due to non-response.

Finally, when everything else fails, for the permanent remaining non-response group we
can try to estimate the impact of their non-response on the population parameter estimates.
In the Netherlands, for example, the odometer readings of each passenger car is registered
in the commercial “National Car Pass” database each time it visits a service station for
a roadworthiness check or a car service, as we already mentioned in Section 3.10. From
the non-respondents in a sample survey to estimate the total number of kilometers driven
by passenger cars in the Netherlands, therefore, a random sample could be selected, after
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which their odometer readings could be obtained from this database in order to estimate
and correct for the bias in the original sample.

8.6 Measurement errors

A measurement error is the difference between the observed value of an element in the
sample or the population and its true value. Measurement errors arise due to the fact that
the “device” used for measuring the variable of interest is imperfect. Let xij denote the
observation of element i of the population (i = 1, . . . , N) at time point j, xi denote the true
value of element i, and eij denote the measurement error of element i at time point j. Then
we have for element i that

xij = yi + eij. (8.1)

It follows from (8.1) that, for a sample of size n,

x̄ = ȳ + ē. (8.2)

The variance of the mean of the n observations in the sample is then

V(x̄) = V(ȳ + ē) = V(ȳ) + 2Cov(ȳ, ē) + V(ē). (8.3)

We may distinguish the following four situations:

• The measurement errors are random, where E(eij) = 0: in this case the measurement
device is off in a random fashion. An example is rounding error when measuring a
person’s length with a ruler or a person’s weight with a scale. Since rounding errors
are random they cancel each other out, and the resulting parameter estimate in the
population is therefore unbiased.

• The measurement errors are systematic, meaning that E(eij) 6= 0: in this case the
measurement device is systematically under- or overestimating the actual values of the
sample elements. This introduces bias. The variance of the mean is not affected by
this bias, but the mean squared error is: MSE = V(x̄) + [E(eij)]

2.

• The measurement errors are uncorrelated with the true values: in this case V(x̄) =
V(ȳ) + V(ē), i.e., the parameter estimate is unbiased, but less precise.

• The measurement errors are positively correlated with the true values: in this case the
variance of the observed mean will be larger than the variance of the true mean, see
(8.3).

Generally, however, this is an area where we can expect naturalistic driving studies to
really outperform surveys where the information is gathered through questionnaires, diaries,
or interviews.
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8.7 Calibration weighting and non-sampling errors

More recently, the use of auxiliary information on the population to reduce sampling error
such as applied in the ratio and regression estimator discussed in Chapter 6 has been general-
ized to also adjust for non-response (Section 8.5), and for multiple registrations (Section 8.4)
and/or missing elements (Section 8.2) in the sampling frame. These recent generalizations
are known as calibration weighting, see for example Kott (2006) and Bethlehem, Cobben,
and Schouten (2011).

In a national travel survey, for example, comparing background variables of the partici-
pants in the sample of respondents that are related to travel behavior such as age, gender,
income and urbanization level with known distributions of these same variables in the total
population (if available!) are used to calculate calibration weights. These calibration weights
are then used to make the sample more representative of the total population, and thus to
correct for selection bias resulting from non-response.

One of the simplest of these weighting techniques is called poststratification. Suppose we
draw a simple random sample of n = 100 elements from a population of N = 1000 elements.
Also suppose that the frequencies of the categories of the variables gender and age in the
population and in the sample are as displayed in Table 8.2.

Table 8.2: Poststratification example

Population
Male Female Total

Young 226 209 435
Middle 152 144 296
Elderly 133 136 269

Total 511 489 1000
Sample

Male Female Total
Young 23 15 38
Middle 16 17 33
Elderly 13 16 29

Total 52 48 100
Weights

Male Female
Young 0.983 1.393
Middle 0.950 0.847
Elderly 1.023 0.850

We see in the example in Table 8.2 that the proportions nh/n of elements in the six
strata made up by the demographic variables age and gender in the sample are not the
same as those in the population. The age and gender groups in the sample are therefore not
completely representative of the age and gender groups in the population. This may be the
result of sampling error, or of non-response, or of a combination of both.

However, if we happen to know the exact number of elements Nh in each of the L strata
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in the population, where h = 1, 2, . . . , L, and N = N1 + N2 + · · · + NL is the total number
of elements in the population, then we can “correct” the sample by weighting the sample
elements with the following weights:

wh =
Nh/N

nh/n
, (8.4)

for h = 1, . . . , L. For females in the middle age group, for example, the correction weight
equals wh = 144/1000

17/100
= 0.847, see the bottom of Table 8.2. By weighting the corresponding

sample elements with these six weights, the frequencies in the contingency table of the
variables age and gender are as shown in Table 8.3.

Table 8.3: Contingency table of weighted age and gender in the sample

Sample
Male Female Total

Young 22.6 20.9 43.5
Middle 15.2 14.4 29.6
Elderly 13.3 13.6 26.9

Total 51.1 48.9 100.0

Comparing the frequencies in Table 8.3 with those for the population at the top of
Table 8.2, we see that the distributions of the variables age and gender in the sample now
match those in the population perfectly.

Letting ȳh = 1
nh

∑nh

i=1 denote the mean of the variable of interest in stratum h, in post-

stratification it can be shown that the correction weights (8.4) lead to the following estimate
of the mean of the population

ˆ̄YPS =
1

N

L∑
h=1

Nhȳh, (8.5)

while

ŶPS =
L∑
h=1

Nhȳh, (8.6)

yields an estimate of the total of the variable of interest in the population. The correction
weights (8.4) at least help to reduce the bias in the estimated population parameters insofar
as auxiliary variables like age and gender are capable of capturing the mis-representation in
the sample due to non-response.

For more sophisticated calibration weighting approaches we refer to Kott (2006) and
Bethlehem, Cobben, and Schouten (2011).



Chapter 9

Conclusions and implications for
naturalistic driving study design

In order to decide what sampling and estimation method is most appropriate in any given
situation, we first of all have to consider the type of sampling frame(s) that are available for
the study at hand.

When this sampling frame contains information on all individual population elements,
a simple random sample (see Chapter 2) or a systematic sample (see Section 7.1) may be
considered. If relevant auxiliary/additional information is available on a qualitative variable
whose categories can be expected to have relatively homogeneous variances, precision can be
increased by using a stratified random sample, see Chapter 3. The same applies to a classified
quantitative auxiliary variable that is highly correlated with the variable of interest.

If the individual values of a quantitative auxiliary variable that is highly correlated with
the variable of interest are known for all sample units, then precision can be further in-
creased by replacing the direct estimator with a ratio or regression estimator, as discussed
in Section 6.1 and Section 6.2. However, this usually requires knowledge of the sum total of
the auxiliary variable in the population. Should the individual values of such a quantitative
auxiliary variable also be known for all population units, then the selection procedure with
unequal probabilities discussed in Chapter 4 can be considered as a useful improvement.

When the sampling frame only contains information on groups of population elements,
then the two-stage sampling methods discussed in Chapter 5 can be used. Once the primary
units have been selected randomly with equal probabilities, both simple random sampling
and systematic sampling may be applied for the selection of the corresponding second-stage
or secondary units. If the sizes of the randomly selected primary units are known, or the total
of an auxiliary variable, the ratio estimator can be used. If the sizes of all primary units in
the population are known, the primary units can be selected with probabilities proportional
to size.

Even when the sampling frame contains information on all individual population ele-
ments, however, both stratified and multi-stage sampling methods can still be used.

In all these cases, given a pre-specified precision and a pre-specified confidence level
it is possible to obtain estimates of the minimal required sample size (see Section 2.8 for
simple random sampling, Section 3.6 for continuous variables and Section 3.9 for proportions
in stratified random sampling, Section 5.1, Section 5.2.3, and Section 5.2.4 for two-stage
sampling, Section 6.1.3 and Section 6.2.3 for the ratio and regression estimators, respectively,

117



118CHAPTER 9. CONCLUSIONS AND IMPLICATIONS FOR NATURALISTIC DRIVING STUDYDESIGN

and Section 7.3.4 for double-sampling for non-response). The same applies to the situation
where sample size needs to be calculated for a fixed budget (see Section 3.4 for stratified
random sampling, Section 5.1, Section 5.2.3, and Section 5.2.4 for two-stage sampling, and
Section 7.3.4 for double-sampling for non-response).

As an illustration again consider Example 2-6, where we assumed a very large population
(so the finite population correction is not required) of car drivers who on average drive
15, 000 kilometers a year. Using a confidence level of 95%, and applying formula (2.65),
the minimal required sample sizes obtained in a simple random sampling scheme needed to
estimate the total number of vehicle kilometers driven by cars in a year with precision levels
of ±10%, ±5%, and ±1%, and population standard deviations of S = 5, 000, S = 10, 000,
and S = 15, 000 are given in Table 9.1. As the table indicates, sample size increases both
when the required precision of the estimate increases, and when the variance of the variable
of interest in the population is larger.

The practical implication of the chosen precision level is that only changes between two
consecutive time points or periods larger than twice this precision level will be detected with
the corresponding sample. If a precision level of ±5% is chosen for the estimation of the total
number of kilometers driven by cars in a country, for example, and the standard deviation of
this variable in the population happens to be S = 10, 000, then changes equal to or smaller
than 10% in the total number of kilometers driven will go undetected with a sample size of
683 cars. When a precision level of ±1% is chosen, on the other hand, and the standard
deviation in the population is S = 10, 000, then only changes equal to or smaller than 2% in
the total number of kilometers driven will go undetected with a sample size of 17,074 cars.

Table 9.1: Sample sizes required for the estimation of total number of motor vehicle kilome-
ters driven by cars in a country with precision levels of ±10%, ±5%, and ±1%, population
standard deviations of S = 5, 000, S = 10, 000, and S = 15, 000, and a confidence level of
95%.

S = 5, 000 S = 10, 000 S = 15, 000
±10% ±5% ±1% ±10% ±5% ±1% ±10% ±5% ±1%

43 171 4,269 171 683 17,074 385 1,537 38,416

The sample sizes in Table 9.1 are conservative in the sense that they are based on the
direct estimator in simple random sampling, which have the largest standard errors and are
thus the least precise. Other estimators like the ratio and regression estimators and other
sampling techniques like stratified random sampling will usually require smaller sample sizes
in order to obtain the same amount of precision. However, the latter approaches also all
require more information about the population at hand than when the direct estimator and
simple random sampling are used.

All these considerations carry over to naturalistic driving study designs. In naturalistic
driving study designs, therefore, the sampling technique of choice will also first of all depend
on whether a centralised national sampling frame is available or not. In the Netherlands,
for example, it seems obvious that the database containing all Dutch licensed vehicles of
the “RDW” (Vehicle Technology and Information Center) is the most appropriate frame
from which to sample passenger cars. The database contains all registered motor vehicles
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in the Netherlands, including several technical specifications of each vehicle. The latter
specifications can be very useful for the stratification of the vehicle population. The Dutch
Vehicle Technology and Information Center also has a database containing all driver licences
issued in the Netherlands, including background variables of the drivers like age and gender.
These demographic characteristics can be used for the stratification of the driver population.
In the Dutch situation the available sampling frames imply that the units to be sampled and
then observed should be the licensed drivers since they are the ones who give informed
consent to participate in the study.

However, if the sampling frame happens to be decentralised and municipal, for example,
then a two-stage sampling design would be called for, as discussed in Chapter 5. A nice
illustration of the latter approach to survey sampling is presented in Rofique, Humphrey,
Pickering, and Tipping (2010). The methodology of this survey covers and combines many of
the aspects of sampling that we discussed in the previous chapters, and we therefore discuss
it here in some detail. In order to obtain estimates of personal travel of the total population
within Great Britain, they used a stratified two-stage random probability sample of private
households in Great Britain. The sampling frame is the ‘small user’ Postcode Address File
(PAF), a list of all addresses (delivery points) in the country. The sample was drawn firstly
by selecting the Primary Sampling Units (PSUs) in the first stage, and then by selecting
addresses within PSUs in the second stage. The sample design employs postcode sectors
as PSUs. There were 684 PSUs in 2010. In order to reduce the variance of estimates of
year-on-year change, half the PSUs in a given year’s sample are retained for the next year’s
sample and the other half are replaced. Hence 342 of the PSUs selected for the 2009 sample
were retained for the 2010 sample, supplemented with 342 new PSUs. The PSUs carried
over from the 2009 sample for inclusion in 2010 were excluded from the 2010 sample frame,
so they could not appear twice in the sample. The dropped PSUs from 2009 were included
in the sample frame.

While the same PSU sectors might appear in different survey years, no single addresses
were allowed to be included in three consecutive years. Each year, the National Center for
Social Research provided the sampling company with a list of the addresses selected for the
previous three survey years. These addresses were excluded from the sampling frame before
the addresses for 2010 were selected. This meant respondents to the previous year’s survey
in the carried over PSUs could not be contacted again.

The list of postcode sectors in Great Britain was stratified using a regional variable, car
ownership and population density. This was done in order to increase the precision of the
sample and to ensure that the different strata in the population are correctly represented.
Random samples of PSUs were then selected within each stratum. Forty regional strata
were used, and within each region, postcode sectors were listed in increasing order of the
proportion of households with no car (according to the 2001 Census). Cut-off points were
then drawn approximately one third and two thirds (in terms of delivery points) down the
ordered list, to create three roughly equal-sized bands. Within each of the 120 bands thus
created (40 times 3), sectors were listed in order of population density (people per hectare).
Then 342 postcode sectors were systematically selected with probability proportional to
delivery point count. Differential sampling fractions were used in Inner London, Outer
London and the rest of Great Britain in order to oversample London, as response rates tend
to be much lower in London compared with the rest of Great Britain. These sectors were
then added to the 342 sectors carried over from the previous years survey to make the final
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sample of 684 sectors for each year.
Next, within each selected sector, 22 addresses (the secondary or second-stage house-hold

units) were sampled systematically, giving a sample of 15,048 addresses (684 postcodes times
22). More details of the sampling methodology used in this survey can be found in Rofique,
Humphrey, Pickering, and Tipping (2010).

Besides the just mentioned considerations concerning the types of sampling frame avail-
able, based on the material presented in this report we end with the following specific con-
clusions and recommendations for the selection of a probabilistic sample of passenger cars
in a naturalistic driving study design.

1. All sample size estimation methods have in common that they require an a priori
specified degree of precision with an a priori specified confidence interval; this therefore
applies to sampling methods for naturalistic driving studies as well. This degree of
precision simply specifies how close we want the sample estimate (of the mean, the
total, or a proportion) to be to its actual population value; this can be expressed in
absolute terms (i.e., I want the sample estimate of the total number of kilometers
traveled to deviate no more than 10 million from the actual total number of kilometers
traveled) or in relative terms (i.e., I want the sample estimate of the total number of
kilometers traveled to deviate no more than 1% of the actual total number of kilometers
traveled). For sample size estimation we also have to specify how certain we want to
be of obtaining the desired degree of precision with a sample.

2. All sample size estimation methods have in common that they require some knowledge
of, or an estimate of, the population variance(s) of the variable(s) of interest in simple
random sampling, of the population variances in the different strata in stratified ran-
dom sampling, and of the variances of the primary and secondary units in two-stage
sampling. When sample size is estimated for proportions or percentages the situa-
tion is easier because a conservative estimate can always be obtained by assuming the
population proportion to be equal to 0.5.

3. When the objective is to measure changes in the population over time, as is the case in
naturalistic driving studies, the required precision should be established by considering
the minimal difference in parameter estimates between consecutive time points that
we want to detect with certainty, see also Chapter 1.

4. When information on auxiliary variables in the population is available that are highly
correlated with the variable of interest this opens up the possibility of improving the
precision of the parameter estimates obtained with simple random sampling (Chap-
ter 2) by using stratified random sampling, see Chapter 3.

5. When several items in the population need to be estimated, then this requires sample
size estimations for each of these items separately. If costs are not an issue, the largest
estimated sample size should be used in order to guarantee the required precision
for all items. In naturalistic driving studies where several RED and SPI items are
estimated, e.g., passenger car kilometers traveled, speed, and seat belt use, sample size
estimations should be made for each of these items also, and the largest estimated
sample size should be used in order to guarantee the required precision for all RED
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and SPI items. If the budget is fixed, it is also still possible to determine the optimal
sample size in stratified random sampling and two-stage sampling.

6. Since national naturalistic driving studies are expected to extend over a number of
years, the best sampling strategy for measuring change is to use a rotating sample
where one half, three-quarter, or even four-fifth of the sample is retained and the
remaining part of the sample is replaced after some fixed period of time.

7. The length of this fixed period of time should also take into consideration the costs
and time required for the installation and de-installation in each sampled car of the
chosen recording device(s).

8. In order to control for seasonal fluctuations (e.g., due to holidays) it seems that the ideal
consecutive period to observe the sample units with the recording device would be one
year. This could be combined with the just mentioned rotating sampling procedure, as
follows. All cars in the selected sample are equipped with the recording device on time
point 1, say. Half of this sample is replaced after half a year, and the replacements
are then observed during one year. The other half of the sample is observed the whole
first year, and then replaced with a new sample, et cetera. In this way none of the
sampled cars are in the sample for more than one year, while still being rotated on a
fifty percent basis.

9. The continuous nature of the measurements obtained in a naturalistic driving study
implies that the ratio and/or regression estimators discussed in Chapter 7 are natural
and well-suited candidates for statistically improving the precision of the population
parameter estimates: the sample observations obtained for the previous time point or
time period can be used to statistically increase the precision of the sample estimates
in the next time point or time period. However, these estimators do require knowledge
of (or estimates of) the population total or mean.

10. When estimates for sub-populations of the total passenger car population in a country
are required, it is recommended to use these sub-populations as strata in a stratified
random sampling design because this yields more precise estimates than when the
sub-populations cut through the strata.

11. The estimation of the required sample size for a pre-specified precision should always
take the problem of non-response into account, and the estimated sample size should
be increased accordingly.

12. In some countries at least, it should be possible to get information on the character-
istics of the non-respondents by using the double sampling for non-response approach
presented in Section 7.3.4. This can be applied in two ways: either by obtaining a
random sub-sample of the non-respondents and then make sure that they participate
in the study after all, or by obtaining a random sub-sample of the non-respondents and
then consulting a second frame also containing (estimates of) the required information.

13. Whenever possible selection bias as a result of non-response should be corrected for
by poststratification based on 1) demographic information of the driver population; 2)
technical characteristics of the passenger car population; and 3) odometer readings of



122CHAPTER 9. CONCLUSIONS AND IMPLICATIONS FOR NATURALISTIC DRIVING STUDYDESIGN

passenger cars as registered during roadworthiness checks. If available this last source
of information is to be preferred since it is the best indicator of the actual distance
traveled by passenger cars in a country.

14. Should it not be possible to install the chosen recording device in all the sampled
passenger cars due to technical restrictions, then these cars should be treated the same
as non-response.
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